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Why are we interested in olfaction of 
insects?

● Biological sensory systems have an amazing 
performance

● Sensory systems are more accessible than 
deeper brain regions (controlled input space)

● Insect olfaction is a good model to understand 
sensory processing
– The systems are comparably small and 

experimentally accessible
– Structure is very similar across species
– Many recent advances (Nobel prize 2004)
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Main olfactory pathway anatomy

Antennal lobe Mushroom bodyAntenna

Box volume ~ number of cells
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Olfactory Receptors
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Odorant Receptor

From Linda Buck: Nobel lecture

Odors evoke different,
but overlapping 
patterns of receptor
activity 
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Early processing

● Each olfactory receptor neuron expresses one 
receptor type

● All olfactory receptor neurons of the same type 
converge onto the same glomerulus

● Projection neurons receive inputs from one 
glomerulus

Odors are encoded as overlapping patterns of pro-
jection neuron activity.
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  “The elucidation of an olfactory map […] leaves 
us with a different order of problems. Though we 
may look at these odor-evoked images with our 
brains and recognize a spatial pattern as unique 
and can readily associate the pattern with a 
particular stimulus, the brain does not have 
eyes. “

Richard Axel, Nobel lecture

In other words:
The algorithm of olfactory information
processing remains to be found.

In Richard Axel's words
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Aside: PN patterns are processed in 
“snapshots”

Perez-Orive et al.,
Science (2002)

Local Field Potential
corresponds to a periodic
20 Hz inhibition onto KCs
in the MB

There is a complex spatial-temporal dynamics in the AL,
 but
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We will assume in the following that odor 
information is transformed into time discrete
“snapshots” of activity patterns transmitted
to the KC of the mushroom body.
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A classical pattern recognition solution: 
Perceptron

Plastic
synapses
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t

A simple perceptron rule:
Train y to respond to odor x
(call it class 1)

… and hope that y does not
respond to any other odor
(call it class -1)

Typical implemetation: 
McCulloch-Pitts neurons
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McCulloch-Pitts neurons are hyperplanes

The equation defines a plane in N

dimensional space.

For example N=2:
“McCulloch-Pitts neurons
fire to the right of a hyper-
plane and are silent on the
left.”
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This perceptron is a linear classifier

The hyperplane is
adjusted through
the training and 
Hebbian learning
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Support Vector Machines (SVM)

Cortes and Vapnik 1992,95: Support vector machine:

Here the hyperplane
is adjusted to maxi-
mise the margin
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Linear Classification can fail

Dimension = number of neurons

Activity neuron x1
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There is no line that 
can separate green 
from red.



Dr. Thomas Nowotny, 
Centre for Computational Neuroscience and Robotics

This can be done by using a non-linear “Kernel function”
instead of the scalar product           .
When used like this it is known as the “kernel trick”.

M. Aizerman, E. Braverman, and L. Rozonoer (1964). 
"Theoretical foundations of the potential function method in pattern 
 recognition learning". Automation and Remote Control 25: 821–837

The projection/kernel/hidden layer trick

Cover, T. (1965). “Geometric and statistical properties of systems 
of linear inequalities with applications in pattern recognition”. IEEE 
T  Elect. Comput., 14, 326.

“Classification is much more probable if the input
 is first cast into a high-dimensional space by a 
 non-linear transformation.”
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A related concept: MLP

If used with a large hidden layer, multi layer
perceptrons (MLP) is a related concept.
See: F. Rosenblatt (1962) “Principles of Neurodynamics”.
New York: Spartan books.
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Nonlinear projection/ hidden layer/ kernel 
trick

Dimension = number of neurons

Activity neuron x1
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Hypothesis: The locust uses this idea

Antenna Antennal
lobe

Mushroom
body Mushroom

body
lobes

We will use a random connections (a random kernel,
in a sense)
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Example result: Classification needs 
sparse code

“Have many, but only use a few”

… and nature uses it!

Perez-Orive et al., Science (2002)

Total number of Kenyon cells Ny

Huerta et al., Neural Computation 16(8): 
1601-1640 (2004) 
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Classify multiple classes of inputs

● 10 classes of inputs, 10 patterns each class
● “Winner-take-all” ouputs:

The output neuron with the strongest input 
spikes

● Simulations in “Drosophila size”
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There are “optimal design parameters”
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Number of active Kenyon 
cells Huerta et al., Neural Computa-

tion 16  (8):1601-1640 (2004) 

There is an optimal  
of active Kenyon cells
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Summary

● Random connectivity seems sufficient for 
classification

● This suggests MLPs with random kernels and 
local, “Hebbian” learning 

● An optimal, sparse level of activity is 
postulated and observed in biology

● These systems are freely scalable & our 
analysis provides the parameters of choice

● These systems are extremely robust
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Shortcomings

● The winner-take-all competition between output 
neurons has to be implemented artificially

● Gain control in the MB has to be implemented 
artificially

These issues can be resolved with more realistic
spiking neuron models.
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Spiking neuron models

McCulloch-
Pitts

Spiking
neurons
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Created with neuranim
http://sourceforge.net/projects/neuranim

Process of recognition: Naïve locust

100 Output neurons:
All-to-all inhibition

2500
Kenyon
cells

Antennal lobe:
100 projection
neurons

Random
connections

“Hebbian”
connections



Dr. Thomas Nowotny, 
Centre for Computational Neuroscience and Robotics

Naïve System

http://sourceforge.net/projects/neuranim
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Experienced System

http://sourceforge.net/projects/neuranim
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Quantitative Analysis
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Nowotny et al. Biol Cyber,  93 (6): 436-446 (2005),
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Quantitative Analysis

Antennal
lobe

Mushroom
body

Naïve system
output

Experienced
system output

Nowotny et al. Biol Cyber,  93 (6): 436-446 (2005),
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Automatic detection of input set structure
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Summary: Spiking model

● More realistic biophysical models demonstrate 
that the system can self-organize to recognize 
odors

● The system detects the structure of the input 
pattern set autonomously
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Beyond olfaction ...

● So far I have presented our investigations of the 
olfactory system of insects using synthetic input 
data.

● To assess the suggested system as a classifier 
we applied it to the standard benchmark of the 
MNIST database of handwritten digits.

● Performance was decent but (as expected) not 
a revolution in machine learning.

Huerta and Nowotny,
Neural Computation (2009)
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Lastly: Implementation of the model(s) on 
NVidia® CUDATM

● Split model in to little pieces that execute in parallel
● Take care to use different memory structures in a smart
  way,

TeslaTM S1070 GPU 

128 cores, 1.5 GHz
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Timing results

Thomas Nowotny, WCCI Barcelona, 2010
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Summary: CUDATM

● I saw an 18 fold speedup on NVidia® TeslaTM 
S1070 compared to a fast multi-core PC (with 
AMD® PhenomTM II X4 940 quad core processor 
at 3 GHz and 4 GB of RAM)

● The systems lends itself to modern prallel 
architectures due to its feedforward structure.

● However: The details of the implementation do 
matter (a lot)
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Upcoming work

● Pheromone ratio recognition in the moth MGC
(with A. Zavada)
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Upcoming work

● Dynamical models of the moth MGC (criticality) 
(with Chris Buckley)
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Thank you for your attention!
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