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Abstract We show in a model of spiking neurons that syn-
aptic plasticity in the mushroom bodies in combination with
the general fan-in, fan-out properties of the early processing
layers of the olfactory system might be sufficient to account
for its efficient recognition of odors. For a large variety of ini-
tial conditions the model system consistently finds a working
solution without any fine-tuning, and is, therefore, inherently
robust. We demonstrate that gain control through the known
feedforward inhibition of lateral horn interneurons increases
the capacity of the system but is not essential for its general
function. We also predict an upper limit for the number of
odor classes Drosophila can discriminate based on the num-
ber and connectivity of its olfactory neurons.

Keywords Olfaction · Pattern recognition · Synaptic
convergence · Information coding · Fan-in · Fan-out

1 Introduction

Odor space is in contrast to visual or auditory space not
endowed with an obvious structure. Accordingly it is not
obvious how odor space should be represented in the olfac-
tory brain structures. In insects, the information collected by
receptor cells in the antenna is projected to glomeruli in the
antennal lobe (AL). Each receptor cell expresses one receptor
type (Vosshall 2001), and all cells with the same receptor type
project to the same glomeruli (Mombaerts 2001; Treloar et al.
2002).As a result, olfactory information seems to be encoded
as combinatorial activation patterns of glomeruli in the AL
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(Joerges et al. 1997; Sachse et al. 1999; Galizia et al. 2000;
Marin et al. 2002). In locust, these patterns are transformed to
spatio-temporal patterns of active projection neurons (PNs)
(Kauer 1974; Laurent et al. 1996, 2001; Wehr and Laurent
1996; Sachse and Galizia 2002) which improve the separa-
tion of representations of similar odors (Stopfer et al. 1997;
Hosler et al. 2000; Friedrich and Laurent 2001). The spa-
tio-temporal code of the AL is transmitted to the mushroom
body (MB) as discrete snapshots of activity (Perez-Orive et
al. 2002). These snapshots are reminiscent of sniffing behav-
ior in mammals even though on a somewhat different time
scale. It has been shown in rats that odor recognition can be
very fast, often performed within a single sniff (Uchida and
Mainen 2003). To investigate such rapid odor recognition we
concentrate on information processing in a single snapshot.
On the single snapshot level, the system needs to perform
a one shot pattern recognition task with noisy patterns. For
other insects, like Drosophila, honeybee or moth, where the
spatio-temporal coding in the AL and snapshot transmission
to the MB has not been demonstrated, the pattern recognition
task addressed here can be interpreted as the rapid recogni-
tion of an initial activity pattern in the AL in response to an
odor.

We consider the activity of the PNs in the AL in a given
short time window as the input to a classification system
consisting of the intrinsic Kenyon cells (iKC) of the MB
and the extrinsic Kenyon cells (eKC) of the MB lobes. Clas-
sification systems in abstract neural networks, e.g., linear
classificators or support vector machines, typically have a
very specific connectivity and are trained to respond to given
inputs with prescribed outputs, i.e., to represent given inputs
in a prescribed way. In this work we explore an alternative
computing strategy based entirely on random connectivity
and self-organization through local learning and competi-
tion.

We demonstrate that the known facts about the olfac-
tory system of insects are consistent with a classification
scheme that does not require tutoring, prescribed representa-
tion of information, or genetically or algorithmically deter-
mined special connectivity.
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Fig. 1 a Response of the neuron model to DC current injection of −0.5 to 0.4 nA in steps of 0.1 nA. b Response of a standard conductance based
model (Traub and Miles 1991) to DC current input for comparison. c Spike response latency for the map model (circles) and the conductance
based model (dashed line) in response to EPSPs evoked by presynaptic voltage pulses from a resting potential of −60 to +50 mV of 1.5 ms
duration (τsyn = 2 ms). The inset shows the corresponding response latency curve for the KC model of Wüstenberg et al. (2004) (τsyn = 10 ms).

Some aspects of the resulting model resemble the ideas
of support vector machines (Cover 1965; Cortes and Vapnik
1995), however, with major differences:

1. The connectivity is unspecific, i.e. the system uses a ran-
dom kernel function

2. The final representation of classes is self-organized through
a type of spike timing dependent plasticity and mutual
inhibition

3. the model system is built with realistic spiking neurons.

The classification procedure is split into two stages. The first
stage is a nonlinear transformation from the AL to the MB,
which separates the patterns in the PNs into sparse patterns in
the iKCs realized by a non-specific connectivity matrix be-
tweenAL and MB (Garcia-Sanchez and Huerta 2003), which
is consistent with observations in Drosophila (Wang et al.
2001). The second stage is linear classification of iKC activ-
ity patterns by eKCs. This stage rests on a type of spike timing
dependent plasticity and mutual inhibition between eKCs, the
combination of which leads to self-organized, simple repre-
sentations of odors which appear very suitable for association
and memory. Experimental evidence for such self-organiza-
tion has been shown in the piriform cortex of rats (Wilson
2003). Direct experimental evidence for the type of repre-
sentations seen in the model described here has, however,
yet to be found.

We built our model with realistic spiking neurons and syn-
apses obeying a local spike timing dependent plasticity rule.
Even though the complexity of the model and its numerical
cost in terms of computation time are much higher than for an
artificial neural network, this step seems necessary to make
the applicability of a model to real biological systems plau-
sible. It has become clear in numerous works (Gerstner et
al. 1993; Gerstner and Kistler 2002; Maas and Bishop 1999;
Sommer and Wennekers 2001; Brody and Hopfield 2003)
that systems built with more realistic models of biological
components can be quantitatively and qualitatively different
from the more abstract connectionist approaches. In the con-
text of this article, for example, non-disjoint representations
of odors that were easily implemented in our previous more

abstract work on the olfactory system of insects (Huerta et
al. 2004) could not be observed under any conditions in the
more realistic system described here.

2 Model description

2.1 Model neurons

Our model is implemented with spiking neurons repre-
sented by a phenomenological, discrete time dynamical map
(Cazelles et al. 2001; Rulkov 2002) with fixed time steps
�t = 0.5 ms. In contrast to phenomenological conductance
based models, this map can be computed very quickly such
that we can simulate neural ensembles with realistic popula-
tion sizes, on the order of thousands of neurons. In particular,
the membrane voltage V (t + �t) of a neuron at time t + �t
is

V (t + �t) =






Vspike

(
αVspike

Vspike−V (t)−βIsyn
+ γ

)
V (t) ≤ 0,

Vspike (α + γ )

V (t) ≤ Vspike×
(α + γ ) &

V (t − �t) ≤ 0,

−Vspike otherwise,

(1)

where Vspike = 60 mV, α = 3, β = 2.64 M�, and γ =
−2.468. β reflects the input resistance of the cell and was
chosen such that the map model matches the corresponding
equivalent Hodgkin–Huxley model and Rall type synapses
(Fig. 1).

The model neurons exhibit a simple spiking behavior in
response to DC input (Fig. 1a) very much like Hodgkin–Hux-
ley neurons (Fig. 1b). The Hodgkin–Huxley neuron shown
for comparison is a standard model (Traub and Miles 1991)
with three conductances, INa, IKd, and Ileak. In particular,

dV (t)

dt
= − 1

C

(
gNam(t)3h(t)

[
V (t) − ENa

]

+ gKn(t)4
[
V (t) − EK

]

+ gleak
[
V (t) − Eleak

]) − Isyn. (2)
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The activation and inactivation variables m, h, and n are gov-
erned by dy

dt
= αy[1 − y(t)] −βyy(t), where y represents m,

h, and n, respectively and
αm = 0.32(−52 − V )/(exp((−52 − V )/4) − 1)

βm = 0.28(25 + V )/(exp((25 + V )/5) − 1)

αh = 0.128 exp((−48 − V )/18)

βh = 4/(exp((−25 − V )/5) + 1)

αn = 0.032(−50 − V )/(exp((−5 − V )/5) − 1)

βn = 0.5 exp((−55 − V )/40)

The conductances and reversal potentials are gNa= 7.15 µS,
ENa =50 mV,gK =1.43 µ S,EK =−95 mV,gleak= 0.0267 µS,
Eleak = −63.56 mV, and the membrane capacitance is C =
0.3 nF.

The map model and the conductance based model have
also very similar spike latencies in response to EPSPs of
different size (Fig. 1c). Because all neurons in this work oper-
ate in a very sparse regime, the good agreement of the two
models in the shown tests implies that the conductance based
model would yield qualitatively and quantitatively the same
results as the map neurons.

We used the original map neurons (Rulkov 2002) that
match this generic and well-tested Hodgkin–Huxley model
for spiking neurons instead of developing a custom model
to match the emerging line of models for the honeybee KCs
(Ikeno and Usui 1999; Pelz et al. 1999; Wüstenberg et al.
2004). While the current study is closer to the biological sys-
tems than our previous work (Huerta et al. 2004), it is still
not describing a specific insect, and specializing to a neuron
model designed to match honeybee KCs would be preten-
tious. Nevertheless, the chosen model is as a type 1 model
well suited to allow low firing frequencies and the observed
sparse activity in KCs (Perez-Orive et al. 2002). The response
latency as a function of the synaptic input is qualitatively sim-
ilar to Wüstenberg’s model of honeybee KCs (Wüstenberg et
al. 2004), see inset in Fig. 1c.

Reaching a steady state in the learning process requires
long simulation runs; The computational speed of map based
neurons allowed us to simulate our model system with 2,720
neurons and on the order of 150,000 synapses over 100,000 ms
on standard PC hardware. The map model was used for all
neurons except the PNs. PN activity was represented by short,
square voltage pulses at the spike times determined by the in-
put patterns. The resting potential was set to −60 mV and the
pulse voltage to 50 mV with a duration of 1.5 ms.

2.2 Synaptic currents

Synapses are modeled by

Isyn(t + �t) = gsynS(t)(Vrev − Vpost(t)), (3)

S(t + �t) =
{

S(t)e−�t/τsyn + δ presynaptic spike at t,

S(t)e−�t/τsyn otherwise.
(4)

S(t) describes the amount of neuro-transmitter active at the
postsynaptic receptors.At each time step in which the presyn-
aptic neuron is spiking, a quantile characterized by δ = 0.25
is released within �t and then decreases exponentially with

rate �t/τsyn implementing neuro-transmitter diffusion and
uptake. The presynaptic neuron is considered to be spiking
when its membrane potential first crosses 0 mV. For the volt-
age pulses representing PN activity, spiking is synonymous
to the voltage being at its high value 50 mV. Vrev is the rever-
sal potential of the synapse and Vrev = 0 mV for all excit-
atory and Vrev = −92 mV for all inhibitory synapses. Vpost(t)
denotes the membrane potential of the postsynaptic neuron.

2.3 Network geometry

The model network is illustrated in Fig. 2. Even though the
architecture and the coding in our classification system were
mainly inspired by the findings in locust, a full size simu-
lation of the locust olfactory system is computationally too
expensive. We, therefore, built a smaller system that roughly
follows the statistics of Drosophila with 100 PNs, 2,500 iKCs
and 100 eKCs. We performed simulations with and without
feedforward gain control. Connectivity is determined by a
random process and then fixed throughout the simulation.
Each PN-iKC pair is connected with probability pPN, iKC =
0.15. The synaptic timescale was τPN, iKC = 2 ms and the
mean synaptic strength was gPN, iKC = 4.545 nS without and
gPN, iKC = 5.25 nS with gain control. This choice matches the
average activity in the iKCs for both cases.We added a Gauss-
ian jitter with standard deviation 1.25 nS to the mean synap-
tic strengths. The gain control was implemented through 20
lateral horn interneurons (LHIs) receiving input from all PN
and inhibiting all iKCs. The inputs to LHIs have strengths
leading to increasing inhibition onto the iKCs with increas-
ing activity in the PNs. In particular, the synapses afferent to
LHI number n have maximal conductance θ/(c + n), with
θ = 53.75 nS and c = 15, and time scale τPN, LHI = 1 ms.
The inhibitory synapses from LHIs to iKCs are characterized
by gLHI, iKC = 8.75 nS and τLHI, iKC = 3 ms.

Any iKC–eKC pair is connected with probabilitypiKC, eKC.
An existing synapse is initially active (strong) with proba-
bility p+

iKC, eKC and inactive (weak) with 1 − p+
iKC, eKC. We

initially use all-to-all connectivity, piKC, eKC = 1 and 20%
active synapses, p+

iKC, eKC = 0.2. The strengths for active and
inactive synapses are drawn from Gaussian distributions with
mean g+

iKC, eKC = 1.25 nS and standard deviation σ+
iKC, eKC =

0.25 nS for the active synapses and g−
iKC, eKC = 0.125 nS

and σ−
iKC, eKC = 0.025 nS for the inactive synapses if not

stated otherwise. The time scale for excitatory synapses is
τiKC, eKC = 10 ms.

The eKCs in the MB lobes interact through all-to-all
mutual inhibition. The mutual inhibition is implemented by
inhibitory synapses governed by (3) with gsyn = 75 nS and
τsyn = 5 ms. The assumption of such a connectivity is moti-
vated by our computational paradigm and as of now a spec-
ulation.

2.4 Synaptic plasticity

All iKCs–eKCs synapses are modified by a spike timing
dependent plasticity rule,
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Fig. 2 a Model system in 1:5 scale. Panels (b) and (c) show the distribution of the number of active neurons in the AL and the MB for a structured
set of 1, 000 inputs (pAL = 0.2, pperturb = 0.1). The distribution of the number of active neurons in the MB lobes depends on the details of the
learning rule and the history of learning and is not shown. Note the difference in the MB activity with and without gain control

graw(t + �t) =






g0 + (graw(t) − g0)e
−�t/τdecay,

no spikes at t

g0 + (graw(t) − g0)e
−�t/τdecay

+A(tpost − tpre − τshift),

pre or postsynaptic
spike at t

(5)

A(τ) =






y−, τ < τ−
a−τ, +y0, τ− < τ ≤ 0
a+τ, +y0, 0 < τ ≤ τ+
y+, τ+ < τ

(6)

with τ− =−(1/c10+1/c11)τlc11/2, τ+ =(1/c01+1/c11)τlc11/
2, a− = −a+ = 2gmax/(τlc11), y− = −gmax/c10, y0 =
gmax/c11, and y+ = −gmax/c01. While the definition might
look rather complex, the learning rule is basically spike tim-

ing dependent plasticity including a time delay for the fi-
nite transmission speed of the synapse. The parameters are
c10 = 105, c01 = 20, c11 = 5, τl = 25 ms, τshift = 10 ms,
τdecay = 105 ms, and g0 = 0.125 nS if not stated otherwise.
Because of the large value of c01, the synaptic strength is
only depressed if post-synaptic spikes are not paired with
presynaptic ones, consistent with experimental observations
(Bi and Poo 1998, 2001; Malinov and Miller 1986; Markram
et al. 1997) and biophysical models (Abarbanel et al. 2002;
Whitehead et al. 2003).

To avoid run-away behavior of the synaptic strength the
raw synaptic strength graw(t) is filtered by a sigmoidal func-
tion gsyn = gmax(tanh((graw(t) − gmid)/gslope) + 1)/2. This
filter implements the restriction of the maximal synaptic con-
ductance of real synapses due to limited resources in terms
of neurotransmitters and the maximal number of ion chan-
nels. The maximal synaptic strength gmax is important in
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determining the average activity in the eKCs. It is matched
to produce approximately the same average activity in all
simulations. If not mentioned otherwise gmax = 3.75 nS,
gmid = gmax/2, ans gslope = gmid.

2.5 Input sets and simulation

The activity patterns of theAL are chosen according to the fol-
lowing prescription. We first choose Nclass basis patterns xµ,
µ = 1, . . . , Nclass by randomly choosing n+ = pALNAL =
20 active neurons for each pattern. The patterns are stored as
binary vectors, where 1 means a neuron is active in this input
pattern and 0 means it is quiescent. The basis patterns are cho-
sen independently. Then we use each of the basis patterns to
generate a class of input patterns, xν

µ, ν = 1, . . . , nclass by
switching active neurons off (replacing 1 by 0) and other,
randomly chosen, neurons on (replacing the previous value
by 1). This perturbation happens with a probability pperturb
which determines the similarity of patterns within a class;
the lower the pperturb, the more similar are the input patterns
within each class. We used pperturb = 0.1 in most simula-
tions. By this mechanism we get classes of inputs that are
highly correlated within the class and uncorrelated across
classes. The fluctuation in the number of active neurons is
small (Fig. 2b) and stems solely from perturbations in which
an active neuron is switched off and the chosen replacement
was already active.

The resulting patterns resemble the observed activity in
the AL of locust with respect to the average activity of PNs
of about 20% per local field potential cycle and the distribu-
tion of active neurons that is close to a binomial distribution
(Stopfer et al. 2003). So far no measurements of the spik-
ing activity patterns of the complete AL could be performed.
Testing our system with observed activity patterns from the
AL of, e.g., locust would be of great interest but will have
to be delayed until such data become available. In the initial
experience phase during which the system forms its repre-
sentation of odor inputs, it periodically receives randomly
picked input patterns. All input patterns are perfectly syn-
chronized assuming that there is no information contained
in the spike timing within a 50 ms time window. The expe-
rienced and the naive system are then tested on a new set of
inputs that was generated from the same class basis vectors
as the training set. Synapses stay plastic during the testing
phase except when the naive system’s performance is tested.
In testing, all inputs are given in a fixed order, each input
once.

2.6 Computational procedures

The system is implemented in C++, compiled with the GNU
g++ compiler version 2.96 (RedHat) and run on a RedHat
Linux MOSIX cluster with 22 AMD Athlon processors. One
hundred simulated seconds execute on a single processor in
about 2000 minutes.

2.7 Distance functions

We investigated the classification performance in terms of
distances of activity vectors of the total activity in 50 ms snap-
shots. The norm of an activity vector is |z| = ∑NX

i=1 |zi |, where
zi , i = 1, . . . , NX, denotes the entries of the NX dimensional
vector z, that represent whether there is a spike (1) or not (0)
in the ith neuron. The distance between two activity patterns
is D(zµ, zν) = |zµ − zν |. The average class vector of class µ

is defined as 〈zµ〉 = 〈zν
µ〉ν = 1

nclass

∑nclass
ν=1 zν

µ. The inter-class
distance is then measured as the distance between average
class vectors,

Dinter = 1

Nclass(Nclass − 1)/2

Nclass−1∑

µ=1

∑

ν>µ

D(〈zµ〉, 〈zν〉), (7)

whereas the intra-class distance is measured as the average
distance of class members to the average class vector,

Dintra = 1

Nclass

Nclass∑

µ=1

1

nclass

nclass∑

ν=1

D(zν
µ, 〈zµ〉). (8)

For a fair comparison between distances of activity patterns
in layers of different sizes and average activity levels, we
normalized distances to the number of active neurons. In par-
ticular,

Dact(zµ, zν) = D(zµ, zν)/(|zµ| + |zν |). (9)

This normalized distance is bounded between zero and one,
0 ≤ Dact ≤ 1 and was used in the calculation of Dinter and
Dintra bounding them in the same way.

3 Results

3.1 General classification performance

Our main tool for analyzing classification performance is the
comparison of the total activity within one snapshot in the
different layers of the olfactory system in response to differ-
ent input patterns. For this analysis we represent the activity in
the three layers of the system as binary vectors of dimension
NX, X representing AL, MB or LB. Each entry in these vec-
tors is one, if the corresponding neuron spiked within a 50 ms
time window, and zero, if it did not. Because of the sparseness
of activity in the system, there are never two spikes within the
50 ms time window corresponding to one snapshot. We mea-
sure the separation of responses to inputs of different classes
and the identification of inputs of the same class using dis-
tance functions of activity vectors. In particular, we compare
the distance between the average activity vectors of classes of
inputs, Dinter, to the average distance of the activity vectors of
inputs within each class to the average activity vector, Dintra.
To compare between representations in the different layers of
the system that have different size, all distances are normal-
ized by the total activity. Details are given in the description
of the distance functions (Sect. 2.7). Figure 3 shows an exam-
ple of the normalized distances between the activity patterns
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Fig. 3 Pairwise distances of activity patterns in the AL, MB and LB in response to inputs structured in input classes. the color of the square at
(x, y) shows the normalized distance Dact between input number x and y. The inputs are ordered by classes, i.e., the first 10 inputs are from class
1, the next from class 2, and so on. The color white corresponds to quiescence in response to one (or both) of the inputs. The system successfully
classifies for 10, 20, and 50 input classes whereas cases of no response in the LB layer appear for 100 input classes

in response to individual inputs in the different layers for
sets of inputs with 10, 20, 50 and 100 input classes of 10
inputs each, obtained without gain control in the MB. For
details about the choice of input classes, confer to the model
description (Sect. 2.5). The structure of the input is appar-
ent from the distances in the AL. While being rather large
between inputs of different classes, the distances within the
classes are rather small. In the iKCs both types of distances
are enlarged, even in terms of the normalized distance per
active neuron. In the MB lobes the differences between dis-
tances within classes and between classes are smeared out
in the naive system. After learning, however, the distances
are enlarged between classes and diminished within the clas-
ses. The system successfully self-organizes and chooses an

efficient representation for the encountered structured input.
The quantitative analysis in terms of inter- and intra-distances
is shown in Fig. 4. For 10, 20 and 50 input classes the sys-
tem successfully classifies all inputs after 100 s experience
with one input per 50 ms. Class representations in the eKCs
of the MB lobes are formed by disjoint sets of representing
neurons for each class, i.e., each neuron is active for only one
class. Depending on the number of input classes the repre-
sentation of the classes is more or less sparse. If the number
of input classes is small the system has sufficiently many
eKCs to represent classes by the activity of several neurons
for each class without overlaps. Such redundancy in repre-
senting few input classes is indeed observed. If the number
of different input classes is larger, less and less neurons are
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Fig. 4 The gray symbols show the system performance with (triangles)
and without (circles) gain control. All data are averages over four inde-
pendently chosen sets of inputs. The error bars mark the averages of the
standard deviations within the individual trials. The effect of gain con-
trol can be seen in the reduced standard deviation of the average number
of active iKC. Apart from a slight increase in overall eKC activity no
significant changes occur in the MB lobes. The black symbols show the
response to inputs of a new, unknown class after the system experienced
a set of input classes for 100 s. The clearly reduced activity and the large
intra-distance in the MB lobes for the new inputs show that the system
classifies the new input as unknown rather than as a member of a known
class

available to represent a class and the system adjusts accord-
ingly keeping the representations disjoint. Strictly disjoint
representations eventually lead to a partial failure in the form
of no response to some inputs if the number of input clas-
ses reaches the number of eKC, see the results for 100 input
classes in Fig. 4. As the MB is not the only olfactory path-
way and has been shown to not be essential for basic odor
perceptions by ablation experiments (Heisenberg et al. 1985;
de Belle and Heisenberg 1994), this mode of failure should
be interpreted as a failure to remember all classes rather than
as a failure to perceive input odors. In contrast to an n-win-
ner-take-all representation (O’Reilly and McClelland 1994),
the self-organized representation of odors in our system is
solely determined by the learning rule, connectivity and type
of activity in the system. Others, e.g., non-disjoint, represen-
tations were not observed even when changing the learning
rule parameters or the maximal conductances of iKC–eKC
synapses. Overly weak synapses lead to complete quiescence
in the MB lobes and overly strong synapses, caused by a high
upper limit of the synapse strength or too efficient reinforce-
ment, drove the system to a complete activation for any input.

It is natural to ask what happens if the experienced system
encounters inputs of a new, unknown input class.As the black
symbols in Fig. 4 show, the inputs of the new class mostly
lead to quiescence of the output neurons. We interpret this
as the system not recognizing these inputs as being inputs
of any of the known classes. The reinforcement of synaptic
strength decays slowly over time, which allows the system
in principle to re-organize its representation if the new input

class is consistently encountered. The detailed investigation
of this aspect is, however, beyond the scope of this paper.

3.2 Gain control

The general statistical properties of non-specific connectivi-
ties restrict the activity levels for successful classification to a
small set of allowed levels (Huerta et al. 2004), and the olfac-
tory system, at least in locust, indeed seems to have a gain
control mechanisms to regulate activity levels in the in theAL
and the MB (Stopfer et al. 2003). The gain control within the
AL is mediated by inhibitory interneurons whereas the iKCs
of the MB are subject to a feed-forward periodic inhibition.
The feedforward inhibition has two functions. It separates
the activity of the AL into discrete snapshots as discussed
in the introduction and because it is driven by the average
activity of the PNs in AL it also provides a feedforward gain
control on the iKCs of the MB. From the prevalence of gain
control mechanisms in the system one expects that gain con-
trol is an important factor. It turns out, however, that for the
input classes with small overlaps used here, gain control for
the activity of iKCs does not seem to be of a major advan-
tage (Fig. 4). We show below that gain control in the iKCs
becomes important when input classes overlap more signifi-
cantly. The irrelevance of gain control for a low degree of
overlap in the input classes indicates inherent robustness of
the structure of the olfactory system. The use of input pat-
terns of nearly constant activity levels in this work implies,
however, the assumption of efficient gain control in the AL.

3.3 MB–LB connectivity

Learning in a statistical framework consists of removing
or introducing synaptic connections. In biological systems,
however, connectivity is much less plastic, at least in the adult
animal. Here, learning consists of changing synaptic conduc-
tances of existing synapses rather than forming new synaptic
connections. To test whether the ability to form any connec-
tion between iKCs and eKCs is important for the classifica-
tion task, we introduced randomly chosen fixed connectivi-
ties of varying connectivity degree and compared the learning
success. Figure. 5a shows the classification performance for
different connectivity degrees, piKC, eKC = 1, 0.75, 0.5, and
0.2, while the probability of existing synapses to be initially
active is kept the same, p+

iKC, eKC = 0.2. For an unbiased com-
parison we adjusted the synaptic strengths of the iKC–eKC
synapses, such that the expectation value of the total synaptic
strength of afferent synapses to each eKC is the same for all
connectivities used. The resulting parameter sets are shown
in Table 1. Figure 5A shows that the performance of the sys-
tem is not significantly reduced if the number of available
synapses is decreased. Only the intra-distances seem to be
somewhat larger than for the full connectivity. Even though
the robustness of the system against removal of possible con-
nections might seem surprising, closer analysis reveals that
the learned input classes are stored in just a few of the total
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Fig. 5 a System performance depending on the connectivity between iKCs and eKCs. Data points and standard deviations are again averages over
four input sets. The circles correspond to full, triangles to 75%, diamonds to 50% and squares to 20% connectivity between iKCs and eKCs. The
main changes with decreasing connectivity degree are decreased activity in the lobes in the naive state as well as in the experienced state and slightly
higher intra-distances. b Final distribution of synapse strengths after 100 s experience. c Percentile of strengthened (with final strength > 1 nS)
and weakened (with final strength < 0.05 nS) synapses. Only a small number of synapses carries the learned information

Table 1 Parameter sets used to compare performance with different connectivities between iKCs and eKCs

piKC, eKC g−
iKC, eKC[nS] σ−[nS] g+

iKC, eKC[nS] σ+[nS] gmax[nS]

1 0.25 0.05 2.5 0.5 7.5
0.75 0.333333 0.0666667 3.333333 0.666667 10
0.5 0.5 0.1 5 1 15
0.2 1.25 0.25 12.5 2.5 37.5

The parameters have been chosen to keep the total synaptic strength of all afferent synapses to each eKC constant on average.

number of synapses (Fig. 5b, c). Our classification system
thus is extremely robust as it finds its way to work quite
efficiently regardless of the initial conditions of connections
from iKCs to eKCs.

3.4 Structure of input classes

It is clear from the Figs. 4 and 5 that system performance
depends on the number of trained input classes. The other
limiting factor is, obviously, the structure of the input. For
the analysis presented thus far we always used input sets
with very clearly separated classes characterized by the low
value pperturb = 0.1. Figure 6 shows the classification perfor-
mance for two less structured sets of inputs with pperturb = 0.2
and pperturb = 0.3. Here, one can clearly see a failure of
the system for the less structured input and large numbers

of input classes. The failure appears in the form of qui-
escence of the lobe neurons in response to all input (not
shown explicitly in Fig. 6, see Supplement). Figure 6 also
shows that for large overlaps between classes, gain control
plays a critical role to increase the number of classifiable
inputs.

Finally we can predict that, according to this analysis, the
maximum number of statistically independent input classes
of the type investigated here that a system of Drosophila size
can classify lies between 20 and 50.

In order to compare to behavioral experiments a few more
steps are necessary:

1. To observe the representation of odors in the AL experi-
mentally and calculate the distances of the representations
of as many odors/odor classes as possible. The distances
have to be measured on the projection neuron response
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Fig. 6 System performance depending on the structure of the input set.
Sets with a different degree of variability in the individual input classes
were tested with the usual protocol. pperturb was chosen as pperturb = 0.1
(circles), 0.2 (upward triangles without and downward triangles with
gain control), and 0.3 (diamonds without and squares with gain con-
trol). The performance decreases with increasing variability in the input
classes. While this decrease is negligible for few (10, 20) input classes
it becomes quite considerable for 50 and leads to failure to classify for
100. Gain control in the MB improves the results considerably. The
shown data are averages over four independent input sets each

patterns. This would allow to estimate the structure of the
input space.

2. Use this input space for our learning machine to automat-
ically separate classes.

3. Determine in our simulations how many input classes of
the observed type the model system can learn.

4. Compare this prediction to behavioral experiments with
the insect, e.g., in an appetitive associative learning par-
adigm.

4 Discussion

Several attempts have been made to understand odor dis-
crimination in models of the olfactory system (Hendin et
al. 1998; White et al. 1998; Gelperin 1999; Li and Hertz
2000; Ermentrout et al. 2001; Brody and Hopfield 2003;
Nowotny et al. 2003; Huerta et al. 2004). The model dis-
cussed here is, however, fundamentally different in provid-
ing a classification scheme that solely relies on the fan-in,
fan-out properties of synaptic connections, the known locus
of learning in the MB and otherwise entirely non-specific
connectivity. At the same time it has been implemented with
realistic enough model components to make it a plausible
candidate for describing the olfactory system of insects. We
have shown that our model system can accomplish successful
classification of odor input patterns. The system self-orga-
nizes by spike timing dependent plasticity and mutual inhi-
bition to classify combinatorially encoded input classes with
simple, disjoint representations. We proved the robustness of

the scheme in two ways. First, broadly modifying the connec-
tivity between iKCs and eKCs does not prevent the system
from good performance. Secondly, the odor classifications
system also works well for a range of gains in the iKCs. The
existing gain control only improves classification when the
input classes overlap significantly. Based on our successful
and robust classification scheme, we make a prediction on the
number of uncorrelated input odor classes a system of Dro-
sophila size can discriminate. Finally, the self-organized dis-
joint representation is suitable for associative learning, which
corresponds with the widely accepted hypothesis that odor
conditioning has its neural correlate in the MB structure.

Our model was constructed with an unspecific connec-
tivity for the projections from the AL to the MB as well as
for the connections between iKCs and eKCs. We were able
to show that there is no need for an explicitly or algorithmi-
cally specified special connectivity. The classification works
on a purely statistical basis. In a recent work in Drosophila
(Marin et al. 2002; Komiyama et al. 2003; Zhu and Luo 2004;
Tanaka et al. 2004) the specificity of PN projections to the
MB and the protocerebrum has been investigated. Marin et al.
(2002), e.g., state: “inspection of axon collateral projections
of different classes of PNs did not reveal obvious stereo-
type as compared to the striking stereotype of lateral horn
axon branching pattern and terminal fields .” Other authors
interpret the data differently so that the situation remains as
yet unclear. With respect to the model presented here, while
specificity is, as discussed, not a requirement for the system,
a suitable refinement of completely unspecified connectivity
might even improve the representations in the MB. In this
sense the classification performance of the model presented
in this paper would be a lower limit to the possible perfor-
mance of systems with more specific connectivity.

The main limitations of our olfactory classification sys-
tem are the total number of input classes and the amount
of structure in the input set. If the number of input classes
exceeds the number of eKCs in the MB lobes, disjoint repre-
sentation becomes impossible and the system fails to respond
to some of the inputs. It is noteworthy that even in this condi-
tion the system still successfully separates input classes. It is
therefore not driven into complete failure by overwhelmingly
large numbers of different inputs. Rather than misclassifying
inputs, it is quiescent in response to some inputs while classi-
fying the remaining inputs correctly. The failure to respond to
some of the inputs can be interpreted as a failure to remember
all input classes. The odor inputs that lead to such a response
failure can still be perceived through parallel olfactory path-
ways consistent with the observation that MBs are not essen-
tial for basic odor perception. If the structure of the input, i.e.,
the ratio of intra- and inter-distances, becomes less and less
pronounced, the system either starts to resolve sub-classes for
small numbers of input classes or is driven into quiescence
earlier than for more structured input. Again, system failure
does not result in misclassification but in a failure to respond
to some of the inputs.

We have not addressed the role of entrainment or experi-
ence time in detail here. It is, however, quite amazing that the
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system classifies inputs correctly even if, as in the example
of 100 input classes, on average only 20 inputs from each
class were presented to the system.

Noise in the olfactory receptors and AL dynamics is en-
coded in the variations of inputs within input classes, whereas
internal noise in the iKCs and eKCs has not been consid-
ered. Experimental data shows (Perez-Orive et al. 2002) that
at least the iKCs seem to suffer very little from internal
noise. We suggest that the remaining noise will be neutral-
ized through the redundancy of multiple snapshots, i.e., the
temporal aspects of the olfactory code in the AL (Stopfer
et al. 1997). Thus, processing single temporal snapshots is
sufficient for clearly distinguishable odorants where noise
does not play a major role whereas more complex stimuli,
including mixtures of odors, require processing of multiple
snapshots (Friedrich and Laurent 2001; Wilson 2003).

There is some evidence that the MB is a multi-modal inte-
gration region combining, apart from olfactory inputs, also
visual (Barth and Heisenberg 1997; Ehmer and Gronenberg
2002) and possibly other information. The system investi-
gated in this paper does not depend on the type and source
of information projected to the MB. Without modification, it
classifies events of coincident multimodal input in the MB
in the same way as purely olfactory input. In this sense the
system is a universal classifier.
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Wüstenberg DG, Boytcheva M, Grünewald B, Byrne JH, Menzel R,
Baxter DA (2004) Current- and voltage-clamp recordings and com-
puter simulations of Kenyon cells in the honeybee. J Neurophysiol
92: 2589–2603

Zhu H, Luo L (2004) Diverse functions of n-cadherin in dendritic and
axonal terminal arborization of olfactory projection neurons. Neuron
42:63–75


