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We propose a theoretical framework for odor classification in the olfac-
tory system of insects. The classification task is accomplished in two
steps. The first is a transformation from the antennal lobe to the intrinsic
Kenyon cells in the mushroom body. This transformation into a higher-
dimensional space is an injective function and can be implemented with-
out any type of learning at the synaptic connections. In the second step,
the encoded odors in the intrinsic Kenyon cells are linearly classified in
the mushroom body lobes. The neurons that perform this linear classi-
fication are equivalent to hyperplanes whose connections are tuned by
local Hebbian learning and by competition due to mutual inhibition. We
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calculate the range of values of activity and size of the network required to
achieve efficient classification within this scheme in insect olfaction. We
are able to demonstrate that biologically plausible control mechanisms
can accomplish efficient classification of odors.

1 Introduction

Odor classification by nervous systems involves several quite different com-
putational tasks: (1) similar odor receptions need to be classified as the same
odor, (2) distinct odors have to be discriminated from each other, and (3)
some quite different odors might carry the same meaning and therefore
must be associated with each other. From studies of insect olfaction, we
have developed a framework that may provide insights into how the olfac-
tory system of insects accomplishes these different tasks with the available
natural technology.

Insects have three known processing stages of odor information before
classification: the antenna, the antennal lobe (AL), and the mushroom body
(MB) (see Figure 1 for a description). To put our work into the right con-
text, we will describe the known facts about the system. Each olfactory
receptor cell in the antenna expresses one type of receptor, and all olfac-
tory receptor cells expressing the same receptor type connect to the same
glomerulus in the AL (Gao, Yuan, & Chess, 2000; Vosshall, Wong, & Axel,
2000; Scott et al., 2001). Thus, a chemosensory map of receptor activity in
the antenna is formed in the AL: the genetically encoded architecture in-
duces a stimulus-dependent spatial code in the glomeruli (Rodrigues, 1988;
Distler, Bausenwein, & Boeckh, 1998; Joerges, Kuettner, Galizia, & Men-
zel, 1997; Galizia, Joerges, Kuettner, Faber, & Menzel, 1997; Galizia, Nagler,
Holldobler, & Menzel, 1998). Moreover, the spatial code is conserved across
individuals of the same species (Galizia, Sachse, Rappert, & Menzel, 1999;
Wang, Wong, Flores, Vosshal, & Axel, 2003) as would be expected given the
genetic origin of the code. There are many fewer neurons in the first relay
station (the AL) than the number of receptors types by a ratio of 1:10. The
reasons for such a strong convergence are not well understood and remain
an interesting theoretical question for future study.

It is known that increasing odor concentrations recruit increasing num-
bers of glomeruli (Ng et al., 2002; Wang et al., 2003). A simple transduction
of the glomerular activity would increase the number of active neurons in
the MB with increasing odor concentration as well. Calcium recordings in
the MB of Drosophila show, however, that the activity in the MB indicated
by calcium concentrations is independent of the odor concentration for the
odors ethyl acetate and benzaldehyde (Wang et al., 2001). Moreover, recent
recordings from the AL in the locust indicate that the activity in the projec-
tions of the excitatory neurons in the AL into the MB is nearly constant in
time (Stopfer, Jayaraman, & Laurent, 2003). Therefore, a gain control mech-
anism maintaining a nearly constant average neuronal activity in the AL
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Figure 1: Description of the structural organization of the first few processing
layers of the olfactory system of insects, including a list of what is known in terms
of coding, odor concentration dependence, and learning of odor conditioning.

must exist. It seems that the AL performs some preprocessing of the data to
feed an adequate representation of it into the area of the insect brain that is
responsible for learning odor conditioning, the MB.

Although the MBs are not critical for normal behavior of insects, they are
crucial for odor conditioning (Heisenberg, Borst, Wagner, & Byers, 1985).
Genetic manipulation has proved to be a powerful tool to identify the MB
as the locus for learning (de Belle & Heisenberg, 1994; Zars, Fischer, Schulz,
& Heisenberg, 2000; Pascual & Preat, 2001; Dubnau, Grady, Kitamoto, &
Tully 2001; McGuire, Le, & Davis, 2001; Connolly et al., 1996, Menzel, 2001;
Heisenberg, 2003; Dubnau, Chiang, & Tully, 2003). Dubnau and colleagues
(2001) propose that “the Hebbian processes underlying olfactory associative
learning reside in mushroom body dendrites or upstream of the mushroom
body and that the resulting alterations in synaptic strength modulate mush-
room body output during memory retrieval.” This is an important idea that
supports our hypothesis that the important synaptic changes to achieve



1604 R. Huerta et al.

classification of odors have to occur in the connections from the intrinsic
KCs to the MB lobes, not earlier or later.

We propose a theory of odor classification that relies on a large coding
display in the MB, random connectivity among neurons, Hebbian learning,
and mutual inhibition. We show that these elements of an odor identification
network are sufficient to accomplish the classification tasks described above
(see Figure 1).

Our main hypothesis as stated in Figure 1 is that the classification de-
cision occurs in the MB lobes that receive inputs from the intrinsic KCs.
This hypothesis is suggested by the concept of support vector machines
(SVM) (Cortes & Vapnik, 1995) and Cover’s work (Cover, 1965), which
were developed in the context of the classification problem based on lin-
ear threshold devices when the input classes are not linearly separable.
The strategy consists of casting the input into a high-dimensional space by
means of anonlinear transformation and then using linear threshold devices
for classification in this higher-dimensional representation. The nonlinear
transformation is designed to separate the previously inseparable input
classes in the new high-dimensional space. In this article, we consider the
AL as the input space, the intrinsic KCs form the high-dimensional space,
and the neurons in the MB lobes are the linear threshold devices that can
separate the classes. The experimental support for having such an SVM is
based on the known large divergence of connections from the AL to the MB
and the observed role of the MB as the focus of learning odor conditioning.

Let us elaborate on the necessary processing layers of the classification
circuit and our hypotheses about these different stages of information pro-
cessing. We consider the AL as the input layer to the classification layers in
the MB. Figure 2 shows the proposed classification scheme. The first pro-
cessing stage is the nonlinear transformation of the information contained in
the AL activity into the large screen of intrinsic KCs. Our hypothesis for this
stage is that the mapping of activity patterns resulting from the transforma-
tion from the AL to the MB should be statistically injective (Garcia-Sanchez
& Huerta, 2003). Injectivity means that if two different states of the AL, aris-
ing from distinct odors, are projected into the screen of intrinsic KCs, the
resulting states in the intrinsic KC layer should be distinct as well.

The next hypothesis is that once the odor representations in the AL have
been widely separated in the intrinsic KC layer, they can be classified at the
next processing stage using simple linear threshold devices (see Figure 2);
we interpret the neurons of the MB lobes as such linear threshold devices.
At this stage, we then employ biologically feasible learning mechanisms to
allow memory formation and self-organization in this part of the network.

In addition to showing that the developed framework indeed allows suc-
cessful classification, we also determine the range of possible values for the
sparseness of activity in the intrinsic KC layer. The results are consistent
with experimental recordings of intrinsic KCs in the MB of locust (Perez-
Orive et al., 2002) and thus give a theoretical explanation for the observed



Learning Classification in the Olfactory System of Insects 1605

Nonlinear expansion
A\

AL—————= intrinsic KC layer ——= MB lobes

NMB

Non-specifi - _
N, | | connectivity Hebbian
matrix learning Mutual
inhibition

A4
Linear classification

Figure 2: Main elements required to account for efficient classification in the
insect olfactory system. The first stage is an injective function from the AL to
the intrinsic KC layer using nonspecific, connectivity matrices (left). By non-
specific, we mean that the connectivity matrix does not need to be learned or
be genetically encoded in detail. For classification purposes, a large number of
neurons in the intrinsic KC layer and a sparse code are needed, as we will show.
The second phase (linear classification) is the decision phase, where linear clas-
sification takes place. It is characterized by converging connections, Hebbian
learning, and mutual inhibition between MB lobe neurons.

sparseness of the code. Finally, we demonstrate that the large size of the
display or screen in the intrinsic KC layer is critical for efficient classifi-
cation and quantify the interdependence of storage capacity and KC layer
size.

Previous theoretical studies have revealed the possibility of using the
temporal dynamics of the first relay station of olfactory processing for odor
recognition (Hendin, Horn, & Hopfield, 1994; Hendin, Horn, & Tsodyks,
1998; White, Dickinson, Walt, & Kauer, 1998; Li & Hertz, 2000). White et
al., (1998) propose delay lines to improve discrimination between odors.
Hendin et al. (1994, 1998) show how the olfactory bulb (equivalent to the
AL) can, in principle, implement an associative memory and segmentation
of odors. Li and Hertz (2000) emphasize the importance of the feedback
from the cortex (equivalent to the MB, the location of odor recognition)
to the olfactory bulb (equivalent to the AL) for odor segmentation. In this
work, we do not consider time or odor segmentation. Time is important to
enhance the separation of similar odors (Friedrich & Laurent, 2001; Linster
& Cleland, 2001; Laurent, 2002; Laurent et al., 2001). The problem of seg-
mentation addresses the question of recognizing odor A or odor B when
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encountering a mixture of both. Both the role of time and the problem of
odor segmentation require detailed knowledge of the AL representation of
odors and mixtures of odors. To date, there is no theoretical work that ad-
dresses these issues, especially of the code for mixtures of odors in the AL,
in a satisfactory way. We therefore restrict our analysis to the spatial aspects
of the representation of pure odors in an appropriate sense.

The model that we present in this article is to our knowledge the first
to address quantitatively the levels of neural activity, convergent and di-
vergent connectivities, and the function of th MB in odor classification. The
role of time is left out for further investigation. We need to understand the
limitations of spatial code processing before exploring the advantages of
using time in the neural code.

The organization of the letter is as follows. We start with a description
of the elements of the system. Then we present two analyses: an analytical
description of a single decision neuron and a systematic numerical analysis
demonstrating that the AL and MB structure together with Hebbian learning
and mutual inhibition account for efficient classification.

2 Description of the Processing Stages

As mentioned above and shown in Figure 2, there are two essential stages
in our model of odor classification: a nonlinear transformation followed by
a linear classification. We will see that the similarities of this core concept
of SVMs to the observed biological system are striking even though the
specific implementation is different because of the actual composition, the
available “wetware,” of the insect olfactory network.

2.1 Nonlinear Transformation from the AL to the MB. Recently, strong
evidence has been collected in the locust (Perez-Orive et al., 2002) that the
spatiotemporal activity in the AL is read by the MB as pictures or snapshots.
The two observations supporting this hypothesis are the strong feedforward
inhibition from the lateral horn interneurons onto the Kenyon cells and the
short integration time of the intrinsic KCs. The periodic strong inhibition
resets the activity in the KC layer every 50 ms, whereas the short integration
time of the KCs makes them coincidence detectors that cannot process input
across more than one inhibition cycle.

Because we are not addressing the temporal aspects of the system in
this work, the input for our classification system is a single snapshot. The
hypothesis for the nonlinear transformation from the AL to the MB is then
that every such snapshot or code word in the AL has a unique corresponding
code word in the MB: the nonlinear transformation needs to be an injective
function at least in a statistical sense. In previous work (Garcia-Sanchez &
Huerta, 2003), we proposed a method to select the parameter values that
allow one to construct such an injective function from the AL to the intrinsic
KC layer with very high probability. The appropriate parameters are used
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throughout this article for designing the nonlinear transformation from the
AL to the MB.

It is known that the activity among intrinsic KCs is very sparse (Perez-
Orive et al., 2002). Most of the intrinsic KCs fire just one or two spikes
during one odor presentation of a few seconds. Given this low endogenous
activity of the intrinsic KC neurons, we chose simple McCulloch-Pitts “neu-
rons” (McCulloch & Pitts, 1943) to represent them. The state of this model
neuron is described by a binary number (0 = no spike and 1 = spike). In
particular, the McCulloch-Pitts neuron is described by

NaL
Yyi=0 <Z GjiXi — 9KC> j=12,...,Nkc. (2.1)
i=1

xis the state vector of the AL neurons. Ithas dimension Nap,, where Ny, is the
number of AL neurons. The components of the vector x = [x1, xo, ..., XN, ]
are Os and 1s. y is the state vector for the intrinsic KC layer; it is Nxc di-
mensional. The ¢;; are the components of the connectivity matrix, which is
Nar1 x Nkc in size; its elements are also Os and 1s. fxc is an integer number
that gives the firing threshold in an intrinsic KC. The Heaviside function
©(-) is unity when its argument is positive and zero when its argument is
negative.

To determine the statistical degree of injectivity of the connectivity be-
tween the AL and intrinsic KC, we first calculate the probability of having
identical outputs given different inputs for a given connectivity matrix:
P(y =y’ |x # x/, C), where C is one of the possible connectivity matrices
(see Garcia-Sanchez & Huerta, 2003, for details) and the notation x # x’ is
{(x,x) : x # x'}. We want this probability, which we call the probability of
confusion, to be as small as possible, on average, over all inputs and over
all connectivity matrices.

We write this average as P(confusion) = ((P(y =y |x # X, O))xzx)cs
where (-)y.c is the average over all nonidentical input pairs (x, x’), and
(-)c is the average over all connectivity matrices C. This gives us a measure
of clarity, the opposite of confusion, as

I =1 — P(confusion). (2.2)

The closer I is to 1, the better is our statistically injective transformation from
the states x of the AL to the states y of the intrinsic KCs.

There are two parameters of the model that can be adjusted using the
measure of clarity. One is the probability pc of having a connection between
a given neuron in the AL and a given intrinsic KC. The second is the firing
threshold k¢ of the intrinsic KCs. Fixed parameters in the model are the
probability par, of having an active neuron in the AL layer, the number Nap,
of input neurons, and the number Nxc of intrinsic KCs. pc and k¢ can be
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estimated using the following inequality,
I<1—{pkc*+ (1 — pko)* + 202)Nxe, (2.3)

where pkc is the firing probability of a single neuron in the intrinsic KC
layer. It can be calculated for inputs and connection matrices generated by
a Bernoulli process with probabilities par, and pc as

NaL

N, ; ,
pre= 2 ( 1AL> (PaLpo)' (1 = parpc)™ . (2.4)

i=0kc

This probability has variance (62 above) when we average over all possible
inputs and connectivity matrices.

The formula for the probability of confusion can be intuitively under-
stood if we assume that the activity of every intrinsic KC is statistically
independent of the activity of the others. If so, the probability of confusion
in one output neuron is the sum of the probability of having a one for two in-
puts plus the probability of having a zero for both: p% -+ (1 —pkc)?. Thus, the
probability of confusion in all Nxc output neurons is (pic + (1 - pKC)z)NKC
in the approximation of independent inputs. This bound on I should be
close to unity for any set of parameter values we choose. The inequality for
the measure of clarity becomes an equality for sparse connectivity matrices.
This, fortunately, is the case in the locust, where every intrinsic KC receives
an average of only 10 to 20 connections from the AL where nearly 900 are
possible.

2.2 Linear Classification in the MB Lobes. As shown in Figure 2, we
hypothesize that the classification decision takes place at the MB lobes. The
neurons in the MB lobes are again modeled by McCulloch-Pitts neurons,
which are simple linear threshold devices,

Nkc
z1=0 Zwlj'y]'_eLB , 1=1,2,...,Ni5. (2.5)
=1

Here, the index LB denotes the MB Lobes. The vector z is the state of the MB
lobes; it has dimension Ny g. i p is the threshold for the decision neurons in
the MB lobes. The Nxc x Nig connectivity matrix wj; has entries 0 or 1. We
introduce a plasticity rule for the entries wj; below.

Every column vector w; (wj; for fixed j) of a connectivity matrix defines
a hyperplane in the intrinsic KC layer coordinates y (see Figure 3 for an
illustration of this). This is the plane that is normal to w;. This hyperplane
discriminates between the points that are “above it” and the points that are
“below it.” There is a different hyperplane for each MB lobe neuron, and the
combinatorial placement of the planes determines the classification space.
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Figure 3: Hypothesized functional diagram of the olfactory system of insects.
The data of the AL are encoded in snapshots. Every snapshot is a binary code of
spikes (1) or no spikes (0). The projection from the AL to the intrinsic KC layer
separates the encoded odors to be classified. The connectivity matrix from the
intrinsic KC layer to the MB lobes defines a set of hyperplanes w that are able
to discriminate between different sets of encoded odors. Note that without the
projection into a higher-dimensional space, it would not be possible to linearly
discriminate the dark points from the light ones.

2.2.1 Local Synaptic Changes: Hebbian Learning. ~Another key ingredient
in addressing the classification problem is a learning mechanism. Hebbian
learning is the classical choice for local synaptic changes (Hebb, 1949). The
resulting local synaptic modifications are made at the linear classification
stage (see Figure 2) and efficiently solve the classification problem. Hebbian
plasticity is used to adjust the connectivity matrix wy; from the intrinsic KC
layer to the MB lobes. No other areas need to be involved in learning for
our model of classification.

The plasticity rule is applied by first choosing a connectivity matrix with
some randomly chosen initial entries. Then inputs are presented to the sys-
tem. The entries of the connectivity matrix at the time of the nth input are
denoted by wj;(n). The values after the next input, wij(n + 1), are given by
the rule

wyj(n +1) = H (21, yj, w;(n)) , (2.6)
where

1 with probability p.,

H 1 wy(m) = {wlj(n) with probability 1 — p,
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0 with probability p_,

wyj(n)  with probability 1 — p_, 27)

H(1, 0, wy(n)) = {

H(O, 1, wjj(n) = wy(n),
H(, 0, wj;(n)) = wy;(n).

A synaptic connection is activated (it becomes 1 when it was 0) with prob-
ability p, if the input activity is accompanied by an output activity. The
connection is removed (it becomes 0 if it was 1) with probability p_ if an
output occurs in the absence of input activity. In the remaining cases, no in-
put and no output and input but no output, the synapse remains unaltered.

For example, let us apply the plasticity rule to a given input y and one
output z = 1. This is the case that we primarily analyze in the next section.
It can be easily calculated that the average number of iterations it takes
for the connection w; to become 1if y; = 1 and w; = 0is 1/p4. If w; was
already 1, then the number of iterations is 0. On the other hand, the average
number of iterations it takes for the connection w; to become 0 if y; = 0 and
wj = 1is 1/p_. In other words, the inverses of the probabilities p, and p_
are just the timescales of synaptic changes. Therefore, if we apply this rule
sufficiently long for one given input activity at the intrinsic KC layer and
an active response z = 1 in an output neuron, the set of active connections
will eventually be the set of active inputs itself.

2.2.2 Mutual Inhibition: nw-Winner-Take-All.  We hypothesize that mu-
tual inhibition exists and, in joint action with Hebbian learning, is able to
organize a nonoverlapping response of the decision neurons in the MB
lobes. This is often considered a neural mechanism for self-organization in
the brain. The combination of Hebbian learning and mutual inhibition has
already been proposed as a biologically feasible mechanism to account for
learning in neural networks (O'Reilly, 2001).

Mutual inhibition is implemented artificially in the finite automata model
with McCulloch-Pitts neurons. We allow only a subset of decision neurons
that receive the highest synaptic input to fire. The size of this subset is fixed
to allow nw winners in a winner-take-all configuration for every odor pre-
sentation. Let us define the vector u, = Z]Iin wy,j yj—OLe- Then equation 2.5
is rewritten as

Nkc
2=0 (> wyy— 0 — (W | - (2.8)
j=1

where {u},,,+1 denotes the (ny + 1)th largest component of the vector u.
Since we force the system to have exactly ny active extrinsic KCs, 6,5 does
not play any role because it is canceled in equation 2.8 and we can simply
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Table 1: Summary of the Parameters and Variables of All the Processing Layers.

AL AL—-KC KC KC— lobe M lobe
Variables X Cij y wjj z
Nk, ke
Parameters ~ NaL, pAL pc pxc(NAL, Pts P NLg, nw
PAL, PC, OkC)
write
Nkc Nkc
z1=0 Zwlj Yi— wa- Yj . (2.9)

j =1 ] =1 nw+1

The parameters and variables of the model are summarized in Table 1.
The AL parameters are the number of neurons Nar, and the probability of
firing par. The connectivity probability from the AL to the MB is pc. The
parameters of the intrinsic KC layer are the number of neurons Nxc and the
threshold for activation 6kc. The firing probability pkc is a function of Nap,,
paL, pc,and kxc. The dynamics of the connections from the intrinsic KC layer
to the MB lobes is governed by the probabilities (timescales) for increasing
and decreasing connection strength, p; and p_. Finally, the response of the
decision layer depends on the number of allowed active neurons in the MB
lobes, ny. For clarity, we also include a summary of the equations of the
model in Table 2.

3 Results

In the following sections, we divide our analysis into two parts. First,
we analyze the parameter values that allow classification with one sin-
gle output neuron. For this analysis, we use basic probability theory in

Table 2: Summary of the Equations.

Intrinsic KC layer =0 (Zi’? Gi Xj — 91((2)

Mushroom body lobes z1=0 <Z]Ii'<1c wyj y; — [Z]IiKlC Wy yj] ),
ny+1
1 withpy if yj=1andz =1
Plasticity rule wi(n+1) = 0 withp_if yj=0and z =1
wyj(n)  in all other cases

Note: The index 1 represents the iteration number for presentations of a snapshot
of AL activity to the intrinsic KCs.
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a similar framework as Caticha, Palo Tejada, Lancet, & Domany, (2002).
In principle, Shannon information can be employed as well, as in Nadal
(1991) and Frolov & Murav’ev (1993) for associative memories. For our pur-
poses, basic probability theory yields straightforward results that are easy to
interpret.

For simplicity, we will use a simple convention to separate the classifica-
tion problem into two subproblems we call discrimination and association:

e The discrimination task is the ability of a single output neuron to dis-
tinguish one input from the rest, assuming uncorrelated input patterns
in the antennal lobe. The probability space of AL activity will be un-
changed throughout our analysis

e The association problem is defined as the capability of a single output
neuron to fire for d given uncorrelated inputs while not responding to
the rest. The discrimination problem can be seen as a special case of
the association problem with d = 1.

In the second part of the results, we present simulations of a complete
system with many output neurons that organizes via the plasticity rule into
winner-take-all configurations. This analysis is different from the previous
one in that the system self-organizes without supervision.

3.1 Discrimination for a Single Output Neuron. We consider a single
output neuron in the MB lobes, usually referred to as an extrinsic Kenyon
cell (eKC). We will show how the ability of this neuron to discriminate one
odor from the rest depends on the total number of neurons in the intrinsic
KC layer and the level of KC activity. The obtained discrimination ability
can be enhanced by redundancy, for example, by using several decision
neurons. The single neuron calculations presented here are in this sense
a lower bound on the ability of the system to perform discrimination. The
application of error correcting codes (Hamming, 1950) based on redundancy
will be investigated in future work.

The goal of the investigation presented in this section is to obtain exact
quantitative statements rather than general trends to be able to compare
our results to experimental findings. Let us proceed with the analysis as
illustrated in Figure 4. As a first step, we need to calculate the probability
distribution of the number of active intrinsic KC neurons (iKCs). The ex-
pectation value for the number of active iKCs is given by E ngc = Nkc pkc,
where Nic is the number of iKC and pkc is given by equation 2.4, (see
section A.1 in the appendix). The probability distribution for the number
of active iKC is, however, not binomial despite the random connectivity
matrix between the AL and the MB. It can be calculated using the same
procedure as in Nowotny and Huerta (2003). The details are explained in
the appendix. The probability distribution P(nxc = k) cannot be simpli-
fied into a more compact form. However, it can be calculated for given pc
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Figure 4: Characteristics of the first processing stage, the nonlinear expansion.
The input probability space in the AL is fixed as a Bernoulli process with pa. =
0.15 in 50 millisecond intervals, as observed experimentally. The probability
distribution, which is a binomial distribution, is shown in the lower left graph.
The intrinsic KCs receive direct input from the PNs according to equation 2.1.
The main parameter, here, is the probability of connection from the AL to the
MB, pc. By changing this parameter, we can regulate the expected activity in
the intrinsic KC layer. The resulting probability distribution for the number of
active iKCs is not a binomial distribution (dotted line in the lower right graph)
but a much wider distribution (solid line in the lower right graph) with an
expected value given by equation 2.4. Given this distribution regulated by pc,
we study the ability to discriminate uncorrelated inputs in the AL by using a
single extrinsic KC. This investigation gives us a lower limit on the performance
of this system that can be quantitatively compared to experimental data.
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and par and stored in the computer for further calculations. As shown in
Figure 4, the distribution P(nkc = k) is three to four times wider than the
binomial distribution obtained if assuming independence of firing events
in the iKCs. The distributions in the figure were obtained for the typical
parameter values of the locust.

To quantitatively determine the ability of the system to discriminate,
we then generate a set of random inputs X9, x2, ..., xV in the AL by inde-
pendent identical Bernoulli processes with probability pz. In section 2.1,
we give the conditions such that the map from the AL activity to the MB
activity is an injective function. If these conditions are fulfilled, the set
of random inputs in the AL corresponds (with probability close to one)

uniquely to a set y%, y', ..., yN of activity vectors in the MB. The activities
nkc(y’) of the activity vectors obey the probability distribution given in
equation A 4.

The first pattern y° is then trained in one single classification output
neuron: one neuron is forced to spike in response to this pattern, while
for all other input patterns, the system acts autonomously. The Hebbian
plasticity rule given in equation 2.8 generates a learned connectivity vector
w = ylif theruleis applied in the order of max{1/p_, 1/p. } times. Given this
learned vector w, we determine the structural parameters such that z(y!) =
z(y?) = --- = z(yN) = 0 with probability close to one. The probability
of discrimination P(z(yl) =0, z(y2) =0,..., z(yN ) = 0) is calculated in
the appendix in section A.2. For successful discrimination, it needs to be
as close to one as possible. To obtain the probability of discrimination, we
basically estimate the degree of overlap of each of the uncorrelated inputs
to the learned one. If the learned vector has [(w) ones, the probability of
having i overlapping 1s between w and any given y/ is

-1
l(‘iN)) (NKC - (W))

LA lgh-i T 3.1)

p(ioverlapping ones) = Nec
(1 (yj ))

The overlapping activity vectors are read by an eKC that has a threshold of
activation, 6. In order for the eKC not to spike in response to the wrong
activity vector y/, the probability for overlaps with i > 65 has to be close to
0. It can quickly be seen that for sparse activity, the probability of overlaps
decreases. The advantage of using sparse code for associative memory was
pointed out by Marr (1969) and others (Willshaw, Buneman, & Longuet-
Higgins, 1969) 30 years ago using nonoverlapping patterns of activity. In
this work, we rigorously calculate the probability of discrimination in order
to determine the minimum size of the intrinsic KC layer, the maximal and
minimal activity in the intrinsic KC layer, the capacity of the system, and
the ability to discriminate similar odors. This will allow us to compare our
results to the real system on a quantitative level.
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3.1.1 Dependence on the Intrinsic KC Layer Size . It is interesting to in-
vestigate the size of the intrinsic KC layer because of the contradiction that
nature seems to have chosen in insect olfaction. On the one hand, the num-
ber of 50, 000 intrinsic KCs in locust is very large. On the other hand, the
locust seems to use only a few of these cells. That raises the question: Is there
an optimal size of the intrinsic KC layer that allows the system to work most
efficiently?

There are two main cases: keep pxc constant, leading to an increasing
number of active neurons ngc = pkc - Nkc, with increasing size Nkc, or keep
the number of active neurons ngc constant by adjusting pxc appropriately.
Using constant pxc is problematic because the learned vector will have too
many active connections due to the Hebbian plasticity rule when Nkc is
large. Since the threshold 65 of the decision neuron is not size dependent,
this causes the neuron to fire for any input, and the network’s discrimination
ability drops drastically for large sizes. We therefore concentrate on the
more interesting second case ensuring a constant average number of active
neurons by using equation 2.4 to modify pc appropriately.

In Figure 5A, the probability of discrimination for a total of N = 100 in-
puts, for various values of the (fixed) average number nxc of active intrinsic
KCs as a function of the intrinsic KC layer size Nic, is shown. For better dis-
crimination, one obviously needs to increase the number of neurons in the
intrinsic KC layer. Note that although the scale shown is logarithmic, one
can see a relatively small area in which the system makes a transition from
failure to function. This points to the possibility that there is a critical num-
ber of intrinsic KCs that can be quantitatively compared to experimental
data.

The mostimportant result is that the minimum iKC layer size for success-
ful discrimination has scaling property as a function of the average number
of active iKCs. The results are shown in Figure 5B for three different values
of N. As one can see in the log-log plot, the exponent does not depend on
N. When we fit these values, Nxc & n%(éz We can theoretically estimate that
Nkc « ”ic (this will be published elsewhere). However, we do not know
at this point where the discrepancy between the exponents stems from be-
cause we took severe limiting cases, like parpc — 0 and Nay, > 6kc, which
has an effect on the scaling exponent. The implication of this result is that
for discrimination purposes, if the internal representation in the intrinsic
KC layer is large, the size of this layer needs to be even larger. The effects
of noise can be strong, because it would require increasing the number of
active neurons, as explained in Garcia-Sanchez & Huerta (2003). We can
conjecture that the intrinsic KC neurons need to have very low endogenous
noise.

3.1.2 What Is the Maximum Number of Active iKC That Allows the System to
Discriminate? It has been experimentally observed that the representation
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Figure 5: (A) Probability of discrimination for N = 100 inputs for several num-
bers of active neurons #ngc in the intrinsic KC layer for a threshold value of
activation in the MB lobe layer of 6;3 = 7. (B) Scaling law properties of the
boundary of discrimination. Solid line: N = 1000 inputs; middle dashed line:

2.12

N = 100; dashed line-N = 10. The exponent of the power law is 2.12, Nxc o< ng”.

of information in the intrinsic KC layer of the locust is sparse (Perez-Orive
et al., 2002). The percentage of iKC neurons that do not respond to the
presentation of any given odor is 90% (the statistic was gathered with fewer
than 100 neurons). This means that only ~ 10% are active during 1 second
of odor response. Therefore, the probability that an iKC will be active in a
window of 50 milliseconds is pxc ~ 0.005. This means that on average, there
are 250 active neurons in every 50 ms snapshot. If we compare this value to
the theoretical sparseness values presented in Figure 6A, we obtain that the
probability of discrimination is 97% for N = 10 uncorrelated inputs, 84%
for N = 100, and 56% for N = 1000. As explained in section 3.1 these values
can be improved by using redundant error-correcting code techniques.

It turns out that there is a mechanism that increases the boundary of
successful discrimination and thus induces a better correspondence to the
experimental observations. Let us assume in the following, for convenience
of the analysis, that all connections from the iKCs to the extrinsic KC are
initially very unlikely. Recall that our learning paradigm so far assumed
that the learning time is much larger than max{1/p_, 1/p+} such that w =
y(xo). For finite time, however, there is a nonzero probability of w # y(xo).
The probability of having an active connection at time t during learning is
pr = p+(1—p4)!~1, where t denotes the number of presentations of input x°.
This probability is valid only for the connections whose presynaptic neuron
is active. Therefore, we can write

Nkc

pdw) = > (@) (@ = po'™ pi ™ P(nge = ), (3.2)
i=l(w)
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Figure 6: (A) Probability of discrimination for N = 1000 (solid line), N = 100
(middle dashed line), N = 10(dashed line) inputs as a function of the average
number of active neurons ngc in the intrinsic KC layer for a threshold value of
activation in the MB lobe layer of 65 = 7 and Nxc = 50000 as in the locust.
The experimental values for the locust are located near the boundary of the
discrimination regime. (B) Effects of having less time to reinforce the positive
odor. The solid line represents p; = 1, the dotted line is for p; = 0.9, and the
dashed line for p; = 0.8. A limited time for learning increases the boundaries of
the discrimination regime.

where the P(ngc = i) is calculated in the appendix. The probability p(I(w))
of having /(w) connections from the iKCs to an eKC is used in equations A.17
and A.22 in the appendix. If we recalculate the probability of discrimination,
we obtain the results shown in Figure 6B. If the probability of transition p is
decreased, the sparse region increases. So in this case, a limited time to learn
the vector to be discriminated can increase the boundary of the parameter
region for successful discrimination.

3.1.3 Discrimination Capacity. Given a set of structural parameters such
as threshold for activation, 6y s, size Nxc of the intrinsic KC layer, and level
of activity pkc, we try to determine the maximal number of inputs that can
be discriminated; we determine the maximum value Ny, of N such that
P(z(yl) =0,..., z(yN ) = 0) > 1 — € where ¢ is a fixed small error toler-
ance. In the appendix (section A.2.4) we calculate the upper bound for the
capacity

- logP(z(y") =0,....2N"H)=0) ¢

The result shows that capacity is proportional to the inverse of the probabil-
ity of misclassification. It is trivial to say that if we increase the probability
of discrimination, we can increase the capacity to discriminate. However, it
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is not trivial to conclude that the capacity to discriminate is proportional to
the inverse of the probability of misclassification.

3.1.4 Resolution of Discrimination. In the previous sections, we dealt
with an uncorrelated set of inputs in the AL. This is a good starting point for
achieving good discrimination abilities. The next question is what the reso-
lution of the insect olfaction system is when the inputs are highly correlated
or very similar.

Let us consider an input x that is learned as the vector x?, that is, the
representation of x in the intrinsic KC layer, y(x), corresponds to w. Now let
us consider another vector x’, which is at distance I(x’ — x) = u. This means
that the vector X’ and x differ in u ones. Let us define f as the event that the
input x produces a spike in a neuron of the intrinsic KC layer and f’ as the
event that the input x’ produces a spike in the same neuron of the intrinsic
KC layer. We want to determine the probability that the input x’ produces
a spike given that the (similar) input x already produced a spike and that
the distance between x" and x is p, [(xX' —x) = p. As always, we also need to
condition for a given number of active AL neurons. We denote the desired
probability as g = P(f' |nar, = k, f,1 = p). In the appendix (section A.2.5),
we explain how to calculate 4.

After obtaining g, we can calculate whether there are sufficient 1s in the
intersection of y(x') and w = y(x) such that the eKC under consideration
is above threshold for input x'. Given that there are ngc = r active intrinsic
KCs in y(x), the probability of having i 1s in the new vector y(x') is

P(icoincident 1s |na; =k, ngc =71) = C)qi a- q)”KC_i. (3.4
Therefore,
Nar Nkc
P(icoincident 1s) = Z ZP(i coincident 1s |nap =k, ngc = 1)
k=0 r=i
x P(nkc =r|nar = kb)P(naL =k), (3.5)

where P(nkc = r |nar = k) and P(ns; = k) are givenin the appendix (section
A.1). We now have the tools to calculate the probability of z(x') = 1 given
thatz(x) =1 and I(x’ — x) = u:

01“371
Pe(x)=1]z() =1,I( =x) =) =1— Y P(icoincident Is) (3.6)
i=0

Figure 7 shows the ability of the system to discriminate similar inputs as
a function of the separation of the input states and for different average
levels of activity in the intrinsic KC layer. The system is able to separate or
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Figure7: Ability to discriminate similar inputs as a function of distance between
the inputs and different levels of average activity in the intrinsic KC layer. The
probability of separating the first learned vector from a similar vector is high
when the distance is larger than 2, 3, or 4 depending on the level of sparseness
of the activity in the KC layer.

discriminate when the distance between the inputs is larger than 4, which is
arather small distance considering the dimension of the input space, that is,
the number of AL neurons. We therefore conclude that it has a great ability
to discriminate similar inputs.

3.2 Association for One Single Output. In the general problem of as-
sociation, one has a set of uncorrelated inputs in the intrinsic KC layer
vy, ¥%, ..., ¥". All these uncorrelated inputs need to produce a 1 in the clas-
sification neuron, z(y) = 1, using Hebbian learning. The rule in equation 2.8
has two limiting cases depending on the choice of p; and p_. The first lim-
iting case is given for p;. — 0 and p_ = 1. Note that in this case, every time
that there is a 0 in the input y;, the connectivity w; immediately drops to 0.
Only the 1s occurring in all d inputs will produce a w; = 1 in an average
time 1/p4. Therefore, the connectivity vector w is eventually equal to the
intersection of all the inputs, that is, w = y' Ny?> N ---Ny?. The second lim-
iting case is given in the extreme p, = 1 and p_ — 0. Following a similar
argument as before, it can easily be seen that w = y! Uy? U --- Uy in an
average time 1/p_. Playing with p4 and p_, one can move w between these
two limiting cases.

Let us study the disadvantages of the first case, (p+ — 0,p— = 1). To
allow any activation of the output neuron, the number of 1s in w needs to
be greater than or equal to 6; 5. One therefore needs to find parameters such
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that the probability of having less than 6;5 1s in w is very small, that is,
P(I(w) < 6g) = € for some small given €. Here, [(w) = Zj w;j the number
of 1s in w. The proper method to calculate this probability is explained in
the appendix in section A.3. However, it is not possible to carry out due to
its computational cost. Nevertheless, we can make a simple approximation
that can contribute to clarifying the association problem. Let us approximate
the probability distribution p;xc(nkc) by a binomial distribution with prob-
ability pxc, where pxc is the expected value of number of active neurons in
the intrinsic KC layer. Then P(I(w) < 6) can easily be calculated as

Og—1

N . ,
PAW) < 0p) = ) < fc> (PLo) (1 — phoNee, (3.7)

i=0

Using this probability, one can calculate the necessary level of activity
pxc in the intrinsic KC layer as a function of 4 for a fixed tolerance €. Fig-
ure 8 shows that in order to be able to associate a few uncorrelated in-
puts, one needs to strongly increase the level of activity in the network
up to unrealistic levels. And this is not all. One also needs to make sure
that one can still discriminate the learned inputs from another sequence of
uncorrelated inputs y+1, y*+2 .. yN+4+1 with the activity pkc obtained
from Figure 8. The way to measure this ability is to calculate P(z(y?*!) =
0,z(y*?) =0, ..., z(yN+¥*1) = 0). How to calculate this probability follows
from equation A.22. The result of this calculation is that for N = land d = 2,
PEy™!) = 0,z(y"?) = 0,...,z(yN***1) = 0) = 1077, whereas for larger

0.8 —

0.6 — —

04— —

Py (activity)

0.2 —

0 1 I 1 I 1 I 1 I 1
10 20 30 40 50

d (number of inputs)

Figure 8: Necessary activity level pxc for an intrinsic KC layer of 50,000 neurons
to be able to associate d independent inputs in the intersection scenario. The
threshold value of activation in the MB lobe layer was 63 = 7, and we used a
tolerance level of € = 107°. Details are explained in the text.
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values of d, the probability is practically 0. This means that in principle, one
can associate d uncorrelated inputs. However, later, one can no longer dis-
tinguish them from the remainder of the N inputs. Therefore, the plasticity
parameters that led to the intersection of the d inputs, (p4 — 0, p— = 1), are
not suitable for association.

Let us proceed to the second scenario in which one has the union of
d inputs, (p+ = 1, p- — 0). In this training process, active states of the
preceding stimulus are diffused to avoid the restrictive condition of the in-
tersecting sets. One obtains a connectivity vector that is the union of all the
training input vectors, w = y! Uy? U - - - U y?. The probability distribution
pl(y' Uy?U- - -Uy%) can in principle be calculated using the inclusion exclu-
sion principle to obtain I((_; <;-; ¥"), namely, I(U;<jy ¥) = Y12 <4 [(y") —
Dt ciy<d LYY D1 i YT NYROYE) — L+ D™, y)
and the known probability distributions for the intersections discussed in
the appendix. Asitis already virtually impossible to evaluate the probability
distributions for the intersections, the probability distribution for the length
of the union is even less accessible. We therefore again assume independent
firing events in the KC layer with probability pxc. Then the probability of
not having a connection in wis (1 — ch)d, where d is the number of associ-
ated inputs. With our independence assumption, the probability of having
I(w) 1sin wis

Nkc

P(l(w)) = (l(w)

)(1 — (1 = pre)H! ™ (1 = pre)®)Nke 1w, (3.8)

This probability can be used in equation A.22 to obtain the probability for
discriminating the rest of the nonassociated inputs, P(z(y?+!) = 0, z(y**?) =
0,...,z(yN+¥*1) = 0) = 1. Note that we do not need to make sure that the
output neuron fires for all the d inputs because w is the union of all those
inputs. One can then calculate the maximum dmax of associated inputs such
that P(z(y*™) = 0,z(y"?) = 0,...,z(yN*¥*1) = 0) > 1 — ¢ for a given
tolerance level € and a given N.

To test the validity of the simplifying independence assumption that led
to the distribution 3.8 which differs significantly from the exact distribution,
we take a semianalytical approach and produce the probability distribution
for the length of the union of the d KC activity vectors numerically. In order to
doso, we choose 1000 independent random connectivities and generate 1000
different input sets of 4 independent random inputs for each connectivity.
We then calculate the length of the union of the KC activity vectors for the
10° chosen connectivity-input pairs. The accumulated histogram of relative
numbers of occurrences for different lengths of the union vector is used
as the approximation for the probability for this length. Once we have the
numerical estimation of the distribution, we again use equation A.22.

Figure 9A shows the probability of discriminating N inputs given that d
1s have been associated. We can see that the semianalytical calculation and
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Figure 9: (A) Probability of discriminating d associated inputs from N = 10
uncorrelated inputs. The solid line represents the values using the approxima-
tion explained in the text. The circles show the semianalytical values, for which
pd(y' Uy*U---Uy%) was estimated from simulations. (B) Maximum number of
associated inputs, dmax for an intrinsic KC layer of 50,000 neurons as a function of
the average number of active neurons ngc for a threshold value of activation in
the MB lobe layer of 6,5 = 7. The lines from left to right are for N = 10%, 10, 10°.
We used a tolerance level of € = 107°.

the approximation start to separate for probability values far from 1. Since
we are interested in determining dmax such that P(z(y**1) = 0, z(y**?) =
0,...,z(yN*t41) = 0) > 1 — ¢, that is, we work in a region where the
probabilities are close to 1, we can reasonably use the approximation.

Figure 9B shows the maximum number of associated inputs dmax as a
function of the average number of active neurons, ngc = pxcNkc, in a KC
layer of Nxc = 50, 000 neurons. Sparse levels of activity achieve the higher
values for the number of inputs that can be associated. However, the overall
ability of the system to associate inputs is not very good. This implies a
prediction on how many uncorrelated odors an insect can associate. From
this analysis, we can see that there are surely no more than 10.

3.3 Self-Organization for Classification with Many Output Neurons.
In the preceding sections, we were able to quantify the dependence of the
classification performance of a single output neuron on the KC layer size
and the level of activity in this layer. In this section, we investigate the
performance of the full system with several output neurons in the decision
layer. It remains to be seen whether the dependencies observed for the single
output neuron are preserved for the system that self-organizes by mutual
inhibition between eKCs and Hebbian learning as described in section 2.2.1.

First, let us be specific about the input classes used in the AL layer. We
create a basis for a set of input classes by a Bernoulli process such that the
probability of having a 1 in an AL neuron is par; that is, we create N, inde-
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pendently chosen basis vectors n', 12, ..., nNe. For each basis vector n, we
then create a set or class of N, inputs that are highly correlated to the basis
vector n*. The vectors in each of the classes u are denoted as x/ (y*) where
w=1...,Ncand j=1,...,N,. The inputs x/ (nH) belonging to class  are
generated by relocating each 1 in n* with probability p;. For p, = 0, all the
inputs of the class are therefore exactly the same, x/(n"*) = n#, and they be-
come increasingly different from each other and the basis n* with increasing
pr. This mechanism to generate classes allows us to automatically create a
large number of correlated and uncorrelated inputs with a controlled de-
gree of correlation. The correlated inputs are those generated from the same
basis vector n*, and the uncorrelated ones are those produced from different
such vectors. We shall see that the correlated inputs will be classified by the
same output neurons and the uncorrelated ones by different ones.

Many parameters need to be adjusted at this point. Let us first specify
which parameters are fixed due to computational constraints. The number
of input neurons, Nat, is set to 100. This number is close to the number of
projection neurons in the AL of the Drosophila. Note that the locust has 830,
which makes it very difficult to gather sufficient statistics in this case due
to long computation times. The intrinsic KC layer size, Nkc, is mainly set to
2500, again as in Drosophila. This parameter is occasionally varied to test the
classification performance as a function of the screen layer. The activity level
in the AL of locust is experimentally at 15% in a 50 millisecond snapshot,
paL = 0.15. We make the assumption that this is similar in Drosophila. The
rest of the parameters, pc and 6kc, are chosen to keep the mapping from
the AL activity onto the KC activity an injective function as explained in
section 2.1 and to regulate the level of average activity, nkc, in the intrinsic
KC layer. The number of extrinsic KCs is not known, so we assume that
Nig = 100. Note that the qualitative results do not depend on this number.

The output response of the decision layer has nyy active neurons for every
input x/(n*). This is achieved via an appropriate level of mutual inhibition
between eKCs. The correlated inputs that belong to the same class should
be classified by the same output response, while different inputs from dif-
ferent classes are to be separated, resulting in different output responses.
To measure the degree of such separation or nonseparation, we define two
quantities that quantify the distance within and among sets of outputs. Let
us first denote the average output in response to a class p of inputs by

() = (26 (1"))) i iy (3.9)

where j takes the values 1, ..., N, and labels the inputs within the class.
Then the distance within a given class is defined as

1941 98
Dintra = 3~ 2 37 2 1200 01") = ()], (3.10)

Nc u=1 "7 iz

~
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Figure 10: An example of the evolution of learning through several presenta-
tions of odors for p, = 0.9, nw = 5, py = 0.2, p_ = 0.5, and average number of
active neurons in the intrinsic KC layer set to r1xc = 35. The solid lines represents
the inter- (upper) and intradistance (lower) for an initial probability of connec-
tion from the intrinsic KC to the MB lobe of 0.1. The dashed line represents an
initial probability of connection of 0.05. This initial probability of connection is
an important parameter for minimizing learning time.

and the interclass distance is expressed as

Ne—1

N,
Dinter = (NZ N )/ Xz: Z; Z/L (z))] (311)

Note that we calculated the distance between classes using the average of
the outputs in response to a class. We chose this definition over using the
distance between all pairs of outputs of different classes to reduce compu-
tational costs. For a given ny, the values of the distances are bounded, that
is, Dintras Dinter < 2nw.

As an illustration of how the system self-organizes by means of mutual
inhibition and Hebbian learning, Figure 10 shows the time evolution of
the system through several odor presentations. The main parameter under
study in this figure is the initial probability of connections from the intrinsic
KClayer to the MB lobe. Lower initial connection probabilities lead to a high
number of iterations before a steady state is achieved. In all our simulations,
we chose the initial probability that leads to short learning times.

3.3.1 Level of Inhibition: Number of ny Active MB Lobe Neurons. In con-
trast to the AL and the intrinsic KC layer, not much is known about the
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connectivity and levels of activity within the MB lobes. Thus, the number of
active neurons in the MB lobes, the threshold level, the probability of mod-
ification of synaptic connectivity, and the initial number of connections in
the system (before learning starts) are free parameters. We need to elaborate
on these parameters before running a parametric search.

First, theoretically, the number of classes that can be stored in the MB
lobes is (I,\kf), which increases quickly with the number of active extrinsic
KCs, nw. If we knew the number of classes that the insect stores, we would
be able to extract an estimate for nyy from this knowledge. It seems that the
larger ny, the better the system becomes. It is, however, unclear whether the
system is able to learn a high ny /Ny p ratio. ny also determines the optimal
value of the interdistance, Djnter.

Let us now consider two vectors that belong to different classes, and let
us assume for a first analysis that z and z’ are randomly chosen vectors with
probability ny/Nrp to have a 1 at any position. The probability that z and z’
share a given active neuron is (nw/N 18)%. Then the probability of having j
common active neurons is P(j) = (N]LB) ((nw/Nig)?) (1— (nw/Nrg)»)™ /. So
the average number of common neurons is 12, /Ny . The expectation value
for the optimal interdistance is then Djyer ~ 2 nyy — 271%/\/ /Npp. Therefore, al-
though the capacity grows with ny, the overlaps among responses increase
proportional to n%,. These theoretical arguments are rather academic, as the
activity vectors are clearly not independent Bernoulli processes in the real
system.

In the simulations of the real system, we randomly choose 2000 inputs
from the set of N = 400 generated inputs and present them to the system.
Usually the system reaches a stationary state after 250 presentations. To
produce reliable statistics, we perform a sufficient number of independent
trials. Five hundred repetitions appeared to be the appropriate compromise
between maximizing precision and minimizing computer time. Figure 11
shows one general example of the efficiency of classification as a function
of the number of active neurons ny in the MB lobes. The solid line repre-
sents the difference between the inter- and intradistance normalized to the
maximum possible value, which is 2 ny. As we can see, the optimal value
to discriminate between classes while grouping the inputs belonging to the
same class is nw = 1. This result is consistent with associative networks,
where sparseness is helpful to achieve minimum overlaps in the output
(Frolov & Murav’ev, 1993; Nadal & Tolouse, 1990).

Shall we then choose ny = 1 as a default value? There are additional cri-
teria that we have not considered here: noise, the ability of the downstream
reader to see one single neuron, and the implementation of the system with
real conductance-based models. In all the calculations that we have shown
here, we did not consider noise. Real neurons are, however, always noisy,
and some redundancy in the system has to be expected. Second, when con-
sidering who reads the output of the MB lobes, we need to ask whether it
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Figure 11: Estimates for the representation quality in the MB lobes as a function
of the number of active neurons nyy in the lobes. The dotted line is D;,,;;, normal-
ized to the maximum value 2 ny, the dashed line is D;,;,,, and the thick solid line
is the difference between them normalized to the maximum. The dash-dotted
line represents D,y — Djura Normalized to the expected maximal difference,
which is 2ny — Znﬁ, /Nig. The values used to obtain this curve are N, = 40,
N, =10,p, =09, p_ = 0.5, p; = 0.2, and pc = 0.21. The different parameter
sets used in the next sections produce the same qualitative results. In particular,
increasing the number of classes N does not change the slope of the decreasing
functions.

is possible to read the response of a single neuron. This is another reason
for some redundancy in the representation. The last issue concerns the im-
plementation of an ny-representation with more realistic neuron models.
It is difficult to adjust the level of mutual inhibition, then represented by
realistically modeled inhibitory synapses with given maximal conductance,
such that any input produces a single neuron to respond. Therefore, to avoid
being unrealistic, we will consider ny = 5 as a moderate choice for the level
of activity in the MB lobes.

3.3.2 Intrinsic KC Layer Size. We have shown the dependence of the
discrimination performance as a function of the intrinsic KC layer size,
Nkc. To compare in the same terms as in previous sections, the activity of
the intrinsic KC layer is again regulated to have a constant average number
of active neurons ngc. Here, we chose the same parameter values as in the
previous section: N; = 40, N, = 10, p, = 0.1, and p_ = 0.5. The probability
of connections from the AL to the MB is set from equation 2.4 such that the
average number of active neurons is ngc = 35.

Figure 12 shows from left to right the observed inter- and intradistances
afterlearning for different intrinsic KClayer sizes. The discrimination ability
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Figure 12: Classification ability among classes versus several sizes of the intrin-
sic KC layer. From left to right, the size runs from 10,000 neurons to 500. The
solid line is the interdistance between clusters, and the dotted line is the average
intradistance within the clusters. There is a clear improvement with increasing
size of the intrinsic KC layer.

clearly improves with increasing Nxc. It is also clear that the positive plas-
ticity timescale p. is critical for smaller KC layer sizes. There is an optimal
value of p where the discrimination ability among classes is best. However,
we can also observe that the intradistance within a class gets worse with
lower values of p,. It seems reasonable that there is a balance between the
ability of the system to separate classes and the ability to put together inputs
that belong to the same class. Therefore, to be able to have an understanding
of the overall performance between these two antagonistic goals, we plot
Dinter — Dintra Versus p4 in Figure 13. One of the main messages one can infer
from this plot is that for larger sizes of the intrinsic KC layer, the learning
rate is not so important. This means that one of the additional advantages
of having a larger system size is more robust learning. For sizes larger than
5000, the system reaches a saturation level regardless of the learning rate.
This size is smaller than the one in Figure 5 due to different numbers of
inputs used.

3.3.3 Level of Activity in the Intrinsic KC Layer. We have demonstrated
that sparse code in the intrinsic KC layer for one output neuron is optimal,
as can be seen in Figure 6. We now analyze the optimal level of activity
in the KC layer with a complete decision layer, including mutual inhibi-
tion between eKCs. To test the ability of the system to classify properly, we
increase the difficulty of the problem by increasing the number of classes
to 200. We then perform the same type of simulations as in the previous
section, but now for different activity levels of the intrinsic KC layer. To reg-
ulate this activity level, we adjust pc appropriately. To increase the speed
of the simulations, we consider only a single MB of Drosophila, which has
Nkc = 2500. Figure 14 shows the results of the simulations. They are con-
sistent with the conclusions drawn in the previous section. High activity
levels on the intrinsic KC layer do not perform very well. It appears that
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Figure 13: Difference between the inter- and intradistances observed versus the
inverse learning rate p., extracted from Figure 12.
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Figure 14: Classification ability among classes versus several activity levels on
theintrinsicKClayer, k¢, for a system with Nxc = 2500. The solid line represents
the interdistance between clusters, and the dotted line is the intradistance within
a cluster. It seems that ngc = 113 classifies better than the rest, and large activity
in the intrinsic KC layer produces very poor performance.

the best performance is achieved at activity levels near 100. Note that the
interdistance is not very high because there are 200 different classes with 10
inputs for each class. This means that there are 2000 inputs that each trigger
5 output neurons in these simulations. Therefore, there have to be many
output neurons that share classes.

To quantify the performance better, we plot the maximum over all tested
p+ of the difference between the inter- and intradistance as a function of the
KC activity levels used, that is, maxy, {Dinter — Dintra} as a function of ngc.
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Figure 15: max,, {Dinter —Dintra} Versus increasing values of activity ngc for Ngc =
2500. There is an optimal activity level in the sparse regime close to nxc = 100.

The result is shown in Figure 15. The best performance is obtained for nxc
roughly around 100. Note the logarithmic scale on the nkc axis.

4 Conclusions

Our results clearly show that the classification task can be implemented
in the first few relay stations of the olfactory system of insects. We have
shown that there is no need for complicated, nonrealistic global learning
rules or highly specific connections. The fan-out and fan-in network struc-
ture, nonspecific or random connections, simple Hebbian learning, and mu-
tual inhibition can implement discrimination between classes and grouping
of similar inputs into the same class.

Within this classification scheme are two main parameters that heav-
ily affect the performance of the system: intrinsic KC layer size and level
of activity in the MB. In simple terms, the larger the number of neurons,
the better the insect will perform in the classification task. For the level
of activity in the MB, there is an optimal value at a very sparse level. A
straightforward prediction arises. The honeybee with 170,000 intrinsic KC
neurons will outperform the Drosophila in any classification task. However,
if we were somehow able to increase the level of activity in the honeybee
MB by genetic mutation or chemical intrusion that increases the excitability
of the neurons, our theory predicts that the performance will quickly decay.

We have also shown that the structural organization of the AL and the
MB provides the basic means to obtain a high level of discrimination for
very similar odors, as we have demonstrated. This indicates that the main
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function of the intrinsic KC layer is to separate all the odor inputs as much
as possible to be associated in the next layer, the MB lobe.

The analysis of the association of unrelated inputs into a single output
response showed that only a limited number of inputs can be associated
(see Figure 9). This can be a specific prediction of the analysis of this article.
The number of uncorrelated odors that an insect can associate is limited to
a few. An experiment to confirm this prediction would need to use a pool
of uncorrelated odors. The detection of uncorrelated odors is in itself not a
simple matter, but we take it for granted for the moment. Then the insect
would need to be forced to associate d odors, and we would test whether
the insect is able to discriminate these odors from N new, uncorrelated ones.
A value of d = 10 associated odors is the maximum number that the insect
might be able to achieve according to our analysis.

In summary, the correct level of sparseness and an appropriate system
size are crucial for association and discrimination in this model that repli-
cates the structural organization of the olfactory system of insects. The im-
portance of sparseness for the capacity of associative memories is an old
theoretical idea that was first proposed by Marr (1969) in a model of the cere-
bellar cortex, and Willshaw and coworkers (1969) in an associative memory
model. Since then, a lot of progress has been made concerning the role of
sparse representations to increase the capacity of artificial associative mem-
ories (Palm, 1980; Tsodyks & Feigel'man, 1988; Amari, 1989; Buhman, 1989;
Perez-Vicent & Amit, 1989). Given that a sparse code has been found ex-
perimentally in the intrinsic KC neurons of the MB of locust (Perez-Orive
et al., 2002), it is feasible to locate the classification task in the MB lobes.
This is also consistent with experimental observations about the location of
learning in odor conditioning.

5 Discussion

We have explored sufficient conditions to achieve classification in the olfac-
tory system of insects. An issue that we have disregarded in this work is the
temporal aspects of the neuronal code. Is there a need for a temporal code?
From the results obtained, it is clear that increasing the activity in the MB
degrades the performance of the system. So what happens if the presented
odor concentrations are increased? With increasing odor concentration, the
number of active sensory receptors increases, and increased activity at the
glomerular level is recorded (Ng et al., 2002; Wang et al., 2003). On the other
hand, recordings in the MB of Drosophila show that in normal specimens
the levels of activity do not seem to change for different odor concentra-
tions (Wang et al., 2001). Recent investigations have shown that the average
activity of the excitatory neurons in the locust AL (Stopfer et al., 2003) re-
mains nearly constant across odor concentrations as well. In between the
glomeruli and the MB, there obviously is a gain control mechanism that
regulates the activity being fed into the MB. The network of excitatory and
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inhibitory neurons in the AL is a good candidate to perform this function.
In this work, we did not consider this function and how to integrate the
temporal snapshots of activity in the AL. We explored just the boundaries
and limitations of a neural network using biologically feasible properties
while disregarding time. Summarizing, the olfactory system certainly needs
a gain control mechanism in order to maintain the activity of the MB within
its working regime.

Another suggested function of the AL that we did not address here is
the role of spatiotemporal code to separate similar odors. Hosler, Buxton,
and Smith (2000) Stopfer, Bhagavan, Smith, and Laurent (1997) showed that
temporal activity plays a role in behavior. Although different odors can be
discriminated without temporal activity, similar odors require spatiotem-
poral activity to be separated (Hosler et al., 2000; Stopfer et al., 1997). It has
been shown experimentally (Friedrich & Laurent, 2001) and theoretically
(Friedrich & Laurent, 2001) that time improves discrimination. In this arti-
cle, we show that the transformation from the AL to the MB using a random
connectivity matrix can produce a very good level of resolution for similar
odors (see Figure 7) without using temporal mechanisms.

We like to think that the connections from the AL to the MB are random
not only because of the mathematical simplicity but also because it works
well. We think that random connections from the AL to the MB allow the
system to be ready for any type of input, such that it does not matter whether
the insect knows the odor. A similar way of thinking can be found in O'Reilly
and McClelland (1994), where random transformations from the entorhinal
cortex to the dentate gyrus in the hippocampus are found to be better in
achieving pattern separation. In principle, we do not think that there is need
for learning at this stage. One possible functional role of synaptic plasticity
has been shown in (Finelli et al., 2004), where synaptic learning improves
the sparse representation in the intrinsic KC layer.

Appendix

A.1 P(ngc = r). The probability that a given intrinsic neuron fires is
given by

NaL

N . ,
pre= 2 < ?L>(p ALpe)' (1 = pape)™ . (A1)

i=0gc

However, in order to estimate the probability of discrimination, we need
to calculate the probability distribution P(ngc = r) to have ngc = r active
intrinsic KCs. The conditional probability that an intrinsic KC fires given
that n4; = k PNs are active is

LI AN .
p(fire |[naL =k) = Z (i>plc(1 —po)k (A2)

i=0kc
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Then the conditional probability to have nxc = r active intrinsic KCs given
nar = k active PNs is

N , .
Pnkc =rinaL =k) = ( fC>P(ﬁre |nar = k)
x (1 — p(fire | nap = ky)Nee ", (A.3)

because of the independently chosen connections. Finally, the probability
distribution for the number of active ngc is

NaL

P(nxc =71) =Y _ Plxc =r|na = k>( )pAL(l —paV R (A4)
k_

Unfortunately, this probability distribution cannot be expressed in simpler
terms and needs to be evaluated numerically.
The expectation value of this distribution is by definition

Nkc
Engc = ZrP(an =7) (A.5)
r=0
NaL Nkc
_ Nkc
- Z ( )p’ﬁm(l — pan)N er( . )
r=0
x p(fire | nap = k)'(1 — p(fire | nar, = k)y)Nke =, (A.6)

The second sum is the expectation value of a binomial distribution with
parameters Nxc and p(fire | n4r, = k) and thusis equal to Nxc p(fire | nap, = k)
such that

Nar Nk Nar 7\ . )
e (51 5 (et a
i=0kc
Nar
= Nkc Z ( )(PALPC) (1 — parpo)Na (A.8)
i=0kc

Note that this is the same expectation value as one obtains assuming inde-
pendence of firing events of intrinsic KCs. The standard deviation of the
probability distribution, equation A .4, is, however, quite a bit larger than
the standard deviation of the binomial distribution obtained under this sim-
plifying assumption.

A2 Piz(y') =0,z(y%) =0, ...,z(yN) = 0).
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A.2.1 Preliminary Analysis. All the activity vectors in the intrinsic KC
layer are obtained from independently, randomly generated activity vectors
in the AL. Assuming that a randomly chosen activity vector y’(x’) has been
trained sufficiently long, the resulting connectivity vector will be w = y/,
as explained in section 3.1. If another input vector y(x) is chosen randomly,
the probability of a proper classification is

Pproper =Pz=0|y# y/)~ (A9)

It is problematic to calculate this conditional probability directly, so let us
try to simplify it:

P(z =0) = PproperP(y # y’) +P@z=0]y= y/)P(y = y/) (A.10)

= Pproper(1 — Py = y/)) (A.11)

The probability P(y = y’) of having obtained the same activity vector twice

is identical to P(x = x') if we assume that the mapping from the AL to the

MB is an injective function. In section 2.1, we give the conditions on the

parameters that ensure an injective function. Appropriate parameters are
used throughout this article. We conclude,

Py=y)=Px=x)=) PXP®X)

NarL
= Z ( )PAL — pap)*Na=h (A.12)
NarL
= (P + (1 —pa)?) (A.13)

For example, the locust has N4, = 830 neurons and pa1, = 0.15; this prob-
ability is approximately 1071%. Another example is the Drosophila with
Nar, = 140. In this example, the probability of collision is 10~!7. We there-
fore can safely neglect P(y = y’) in equation A.11 and call P(z = 0) the
probability of proper classification.

A.2.2 Probability to Discriminate Another Randomly Chosen Input. The
probability of having i coincident ones in a randomly chosen activity vector
y with [(y) 1s, that is, I(y) = > _;y;, and a given connectivity vector w is
(l(W)) (NKC l(W))

i

I(y)—i
W . (A.14)
I(y)

Then the probability of proper classification given w and I(y) is

PG|w,l(y)) =

Orp—1

Pz=0|w,l(y) = Y Pi|w.Iy). (A.15)
i=0
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In the next section, we will use

Nkc
Pz=0|w)= Y P(z=0|w.l(y)P(c = Ly)). (A.16)
I(y)=0

Finally, the total probability of proper classification for two random inputs
is

Nxc
Pz=0)= Y P(z=0|w)P(gc = l(w)). (A.17)
I(w)=0

A.2.3 Probability of Discrimination Failure for a Set of N Inputs. We now
generalize the result obtained in the previous section to a set of N inputs.
The conditional probability for a given connectivity w and a single input is
generalized to the joint conditional probability to produce z = 0 with each
of a set of N inputs. First,

Pa(y") = 0,2(y%) =0,...,z(y") = 0| w)

N
=[[Pay) =0lw). (A.18)
j=1

because all y/ are statistically independent (as they are functions of the
independently chosen x/). As all X/ are generated by identical Bernoulli
processes,

P(z(y)) = 0|w) = Pz(y)) = 0|w) V], (A.19)
such that we obtain

Pi(y') =0,2(y%) =0,...,zy") =0) (A.20)
Nkc

= Y Py =0zy")=0...z25") =0|w)

I(w)=0
x P(nkc = l(w)) (A.21)

Nkc
= Y (Pz=0|w)NP(nkc = I(w)), (A22)
I(w)=0

where we used P(z(yl) =0|w) =P@z=0|w).
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A.2.4 Discrimination Capacity. To estimate the capacity, we need to find
the maximum value of N such that 1 — P(z(yl) =0,..., z(yN ) = 0) is below
a given small tolerance level €. Thus, we take equation A.22 and apply the
Jensen inequality to the convex function f(x) = xV, leading to

Py =0,....z(y") =0)

Nkc
= ) (Pe=0]w)"P(uxc = I(w) (A23)
I(w)=0
Nkc N
> ( Y P=0[w)P(xc = l(w))) (A24)
I(w)=0
= (P(z = 0)N. (A.25)

Note that P(z = 0) has been calculated in section A.2. So N is bounded by

- log P(z(y") =0, ...,z(yN) =0)

N log P(z = 0)

(A.26)

Using P(z(y!) =0, ..., z(y") = 0) = 1 —¢ and taking into account that with
P(z(y") =0, ..., z(yN) = 0) close to one automatically also P(z = 0) is very
close to one, we can write in very good approximation

- logP(z(y") =0,....2(9M)=0) €

N ~ . A27
log P(z = 0) Pz=1) ( )
A25 P(f"|naL =k, f,1=p). The probability q can be expressed as
q=P(f InaL=k fil=p (A.28)
Nar
n=0
x PQjcixj =n|naL =k, f,1=p) (A.29)
Nar
= Z P(f'1 3 jcx = n.naL =k, 1 = )
n=max{fkc, 1}
x Py ieixj = |naL =k, f). (A.30)

The last factor can be rewritten as
P e =n0 fNnaL =k
P(f |naL =k)P(naL = k)
B PQQ_jcixi = n|naL = k)
P(fInaL =k

PQjcixi=nlnaL =k, f) =

(A.31)
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All factors are now known, namely,

P(f' I Xjexi = . nar =k, 1 = p) (A.32)

m

M . i
B > <i>(pc)’(1 —po) fork=n, 1= bk, 1
) i=max{u—(n—6kc),0}

0 otherwise

k
PQQjeixj =n|naL =k) = (n>PZ(1 — po)k, (A.33)

and P(f | nar = k) is given by equation A.2.

A3 PU(y'ny?N---ny¥) < 6.). The probability of having i intersecting
1s given two vectors y! and y?, whose lengths are I; and I, is

(")

Pl Il = s (A.34)
I

The probability of having i, intersecting 1s of the vector y> given i; coinci-
dences of the first two vectors is

BRI

Plia|h, b, I3, 11) = =5 - (A.35)
(1)
Given that we know P(iy | 1, [), we can now write
min{ly,,l5} (i) (Nkc—ir) (b (Nkc—h
Pz |y, I, I5) = Z (12)( I3—ip ) (11)( L—iy ) (A36)

= 9 )

We can continue this procedure to calculate the probability of having i;_q
1s in the vector (y' Ny? N ---Ny¥), which is

. ]_ Imin ll NKC _ ll
Pligt ool = ——xe ) ()( , )
Hj:z ( 11/<c) ig_dg_gei =0 i h—i
1g2=<14-3=...<I1

d-2 . .
XH(,lj )(NKC—.lj)’ (A37)
j=1 iiv1/) \ljiv2 — i1

where lhin = min{ly, I, ..., l;}.
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The not-firing probability of the extrinsic KC is P(I(y! Ny*> N --- N y%)

< 61). Therefore, the conditional not-firing probability given (I1, I, . . ., l3)
is
L O15—1
P(fire |l b, ... 1) = Y Plig— |l b ..., 1. (A.38)
id_1=0
Finally,

PA(y' ny*n---Ny?) < 6p)

Nkc

d
= Y P(ire|h.b.....I) [ [Pkc =1, (A.39)
h.lo,....1;=0 j=1

where P(ngc = I;) is given in Section A.1. The main problem with this calcu-
lation is the computer time required to evaluate it. The minimum number
of calls to the hypergeometric function based on the multiprecision library
(Torbjorn, 2001) is (Nmax(d — 1)6;5)". For the parameter values correspond-
ing to the locust we have 0rp = 7 and Npmax = 2000, where Nmax is defined
by the condition

Nmax

Y Plixc=i)=1-¢, (A.40)
i=0

with € = 107°. The number of associated inputs that we can analyze is
therefore with d < 4 rather small. An approximation is required to draw
conclusions for larger d.
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