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Experimental background

» Moth pheromone-sensitive sensillum

trichodeum in tip-recording conditions > Primary culture of ORNs and

_ whole-cell patch-clamp
Record the extracellular potential SP at the

tip which is related to the RP
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Aims

[. Mathematically describe the chemo-electrical transduction
taking place at the sensillar lymph and ORN outer dendrite.

II. Using compartmental model to investigate the sensillar
circuitry and quantitatively fit to the dose response curves
obtained by tip-recording experiments.

[II. Employing Hodgkin-Huxley type model to study the ionic
channels generating action potential at the ORN soma and fit to
the data obtained by patch-clamp experiments.




l I. Mathematically describe the chemo-electrical
transduction taking place at the ORN outer dendrite

» The qualitative model
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l ‘ Modeling the electrical network at the sensillum

» The equivalent circuit of the three-compartment model
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» The quantitative description of the electrical network

The receptor potential (RP) at the dendrite is

The mathematical description of each compartment, RP=V,-V.)-V,0-V,0)
k, can be derived from Kirchhoff’s current law
The measured sensillum potential (SP) by
dv,

-~ 9 tip-recording experiment is
Imk ka * ]tonk SP = Ved - Vedo




l ‘ Fitting to the tip-recorded dose response characteristic

function by three-compartment model
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» The heights of SP & RP are very
different, by contrast, their half-
rise and half-fall times are closer.

» The model obtained captures the
main features of the dose-
response curves of SP:

1) the wide dynamic range from
1047 uM/s to 10! uM/s of 6
decades with almost the same
saturation amplitudes as the
experimental data;

2) the short rising time;

3) the long falling time.




. Sensillum model with multicompartmental
outer dendrite and its simplification

» The circuit of pure electrical sensillar model with N+2 compartments
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. »The quantitative description of the N+2-compartment model
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Comparing the steady state values of the
model with the analysis results

Computer simulations for models with 1 to 40 dendrite compartments
were performed and the resulting steady state values were compared

with their analytical value obtained by Vermeulen and Rospars in
Eur Biophys J (2001) 29:587-596.
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The relative error
increases with
pheromone dependent
conductance gs and
decreases with number
of compartments. It is
less than 1% with 40
dendrite
compartments and
greater than 24% for
gs =10 nS with 1
dendrite compartment.




. Effect of the battery Ea situated at the auxiliary cells

Experimental hypothesis: Ea plays a functional role in increasing sensitivity.

The height of RP at the
dendrite base
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Multicompartmental sensillar model with pheromone

transduction cascade and realistic channels

The circuit of each
compartment

at the ORN outer
dendrite

The circuit of
the ORN soma
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Result with one
compartment at

the outer dendrite

Result with 20
compartments at

the outer dendrite
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. Simplification of the multichannel model
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For simplicity, let E = 0, using

Height of gs (nS)

this equation, we get g for each
compartment based on the
simulation result on the multiple
channels and multiple
compartments model.
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IT1I. Modeling the ion currents through voltage-gated
channels generating action potential at the soma and

Therendaitia) pagrpent ek ORN
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- Data preprocessing

Step 1: Removing the artifacts

1) Taking the average of data obtained from 10 to 12 experiments.

2) Taking the average of the data before and after the artifacts as

the value during the artifacts.

Step 2: Removing the noise and smoothing the current curves

Moving average approach

Processed voltage-
dependent delayed
rectifier K currents
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Processed voltage-
dependent Ca
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- Modeling the ion currents by Hodgkin-Huxley type equations

Maximal conductance /Reversal potential
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Voltage-gated
Ca currents
and Ca -and
voltage-dependent
K currents

Voltage-gated
delayed rectifier
K currents
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Voltage-gated . .
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Fitting to the data by simulated annealing algorithm
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Perspectives

> Properly simplify the detailed sensillar model by including
only the major transduction steps and ionic channels:
translocation, receptor activation, effector activation,

DAG-
and Ca2+-gated channels.

> Fitting to the experimental data of the voltage-gated and
Ca -gated currents at the soma and axon initial segment.

» Built a complete ORN and sensillar model by Including the
action potential generators — the voltage- and Ca -gated
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