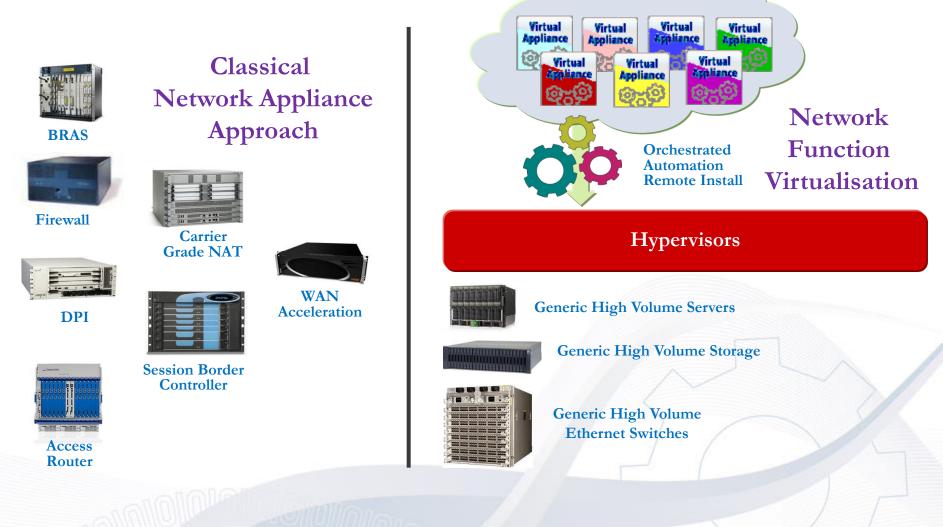


Network Functions Virtualisation: The New Frontier of Telecoms Innovation

Daniel King **PhD Student – Lancaster University** <u>d.king@lancaster.ac.uk</u>



Research – Team

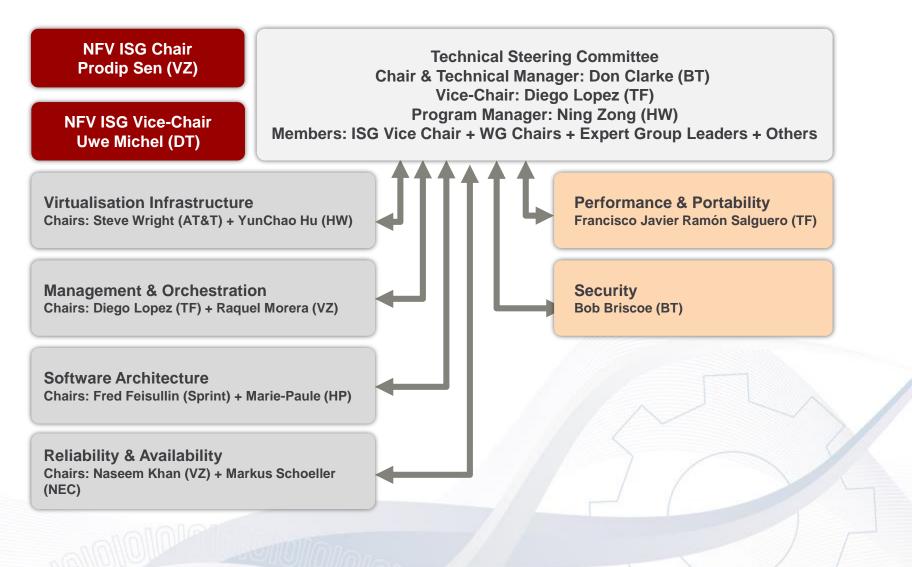
- LU Team
 - PhD Supervisors:
 - Professor David Hutchinson
 - Dr Christopher Edwards
 - Dr Nicholas Race
 - Research Partner
 - Chris Ford, Lancaster University Management School
- Academic Rationale
 - Opportunity to investigate an emerging area in computer science and telecommunications research.
 - Provide useful data and evidence to industry and standards development organisations.
- My Industry Experience
 - Bell Labs, Cisco Systems, Redback Networks, Movaz (ADVA), Aria Networks
 - IETF WG Secretary of ROLL, L3VPN, CCAMP and PCE.
 - Author: RFC4687, RFC5557, RFC6006, RFC6007, RFC6163, RFC6639, RFC6805.
 - Currently progressing 7 WG documents and 7 individual drafts.

Research – Network and Function Virtualisation

LANCASTER UNIVERSITY

Research – Investigating the Problem Space

- Evidence gathering
- "A Critical Survey of Network Functions Virtualization" to help define the problem space
 - Qualitative and exploratory study (Eisenhardt 1989, Yin 2009, Thomas 2011)
 - Inductive, hypothesis-generating approach
 - Guided by tenets of Grounded Theory (Glaser and Strauss 1967, Charmaz 2006, Corbin and Strauss 2008, Suddaby 2006)
- Analysis (Miles and Huberman 1994)
- Detailed coding of interview transcripts (nVivo).
 - Development of concepts and their dimensions.
 - Intensive review around each concept.
- Interpretation
- Combining memos & concepts into cohesive whole.
 - Establishing cross-user connections.
 - Identifying industry comparatives to inform analysis (e.g., Human Genome Mapping)
- Writing up
- Develop substantive model and frameworks.
- Construct authentic & plausible arguments (economic and technical) based on evidence.
- Publishing findings and conclusions documents (including IETF informational I-Ds and ETSI contributions).
 4



Research – NFV Concept Development

- European Telecommunication Standards Institute (ETSI)
 - Role has been to provide an environment to develop the problem space.
 - Responsibility to publish problem statements, requirements and recommendations.
- ETSI NFV History
 - Whitepaper "Network Functions Virtualisation An Introduction, Benefits, Enablers, Challenges & Call for Action", October 2012.
 - Initial concepts discussed at the end of 2012 in ETSI Future Networks Workshop.
 - Formal Industry Specification Group (ISG) session in January, 2013.
 - NFV ISG has met twice in 2013, with a third session planned for Bonn in July 2013.

Research – ETSI NFV ISG Structure

Research –NFV ISG Work Contributions

Research – NFV Interviewees

- A total of Twenty (20) CSPs have been identified and targeted.
- Discussions and interviews to date:
 - British Telecom
 - Verizon
 - KDDI
 - AT&T
 - Telefonica
 - Telstra
 - NTT docomo
 - France Telecom
 - Deutsche Telekom
- Initial focus on CSPs to gain rich data and develop initial concepts.
- Second round includes vendors and other stakeholders.

Findings – So Far (1)

- Operators have been independently researching network and function virtualisation with hardware and software vendors for years.
- "Enablers for NFV?"
 - Open Innovation during early stages of process and technology development
 - Performance of commodity hardware
 - Success of previous Hosted and Cloud Services
- Most interviews highlighted that industry cooperation is required to:
 - Sanity check use cases.
 - Apply pressure on vendors.
 - Provide the economy of scale for commercial development, deployment and operation of NFV-enabled services.

Findings – So Far (2)

- Infrastructure Complexity
 - Increasing variety of proprietary hardware and dedicated function.
 - Current nodes are fragmented with disparate operation and management.
- Energy Consumption
 - Sites are expanding while operators and customers are being directed to reduce CO2 emissions.
- Service Deployment
 - The time to specify, procure, integrate and deploy needs to be radically reduced.
 - Increased automation of service deployment.
- Rationalisation of Operation Support Systems
 - Physical presence and consequent operations per component and site.
 - Too many disparate OSS and NMS entities in the network.

Findings – Network Functions Virtualisation

- BT Virtualisation Testing from 2012 [1]
- Combined BRAS & CDN functions on Intel® Xeon® Processor 5600 Series HP c7000 BladeSystem using Intel® 82599 10 Gigabit Ethernet Controller sidecars
 - BRAS chosen as an "acid test"
 - CDN chosen as architecturally complements BRAS
- BRAS created from scratch so minimal functionality:
 - PPPoE; only PTA, priority queuing; no RADIUS, VRFs
 - CDN COTS fully functioning commercial product

[1] Bob Briscoe, Don Clarke, Pete Willis, Andy Reid, Paul Veitch, "Network Functions Virtualisation" <u>http://www.ietf.org/proceedings/86/slides/slides-86-sdnrg-1.pdf</u>

LANCAST

Findings – Network Functions Virtualisation

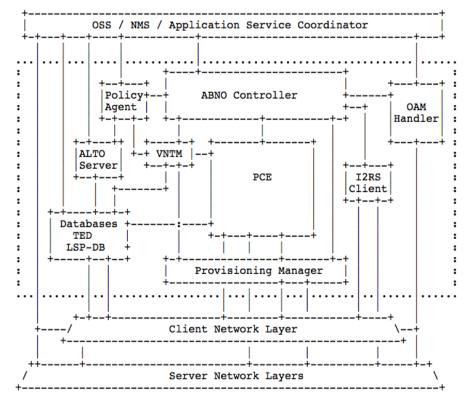
Test	Description	Result
ld		
1.1.1	Management access	Pass
1.2.1	Command line configuration: add_sp_small	Pass
1.2.2	Command line configuration: add_sub_small	Pass
1.2.3	Command line configuration: del_sub_small	Pass
1.2.4	Command line configuration: del_sp_small	Pass
1.3.1	Establish PPPoE session	Pass
1.4.1	Block unauthorized access attempt: invalid	Pass
	password	
1.4.2	Block unauthorized access attempt: invalid user	Pass
1.4.3	Block unauthorized access attempt: invalid VLAN	Pass
1.5.1	Time to restore 1 PPPoE session after BRAS reboot	Pass
1.6.1	Basic Forwarding	Pass
1.7.1	Basic QoS - Premium subscriber	Pass
1.7.2	Basic QoS - Economy subscriber	Pass
2.1.1	Command line configuration: add_sp_medium	Pass
2.1.2	Command line configuration: add_sub_medium	Pass
2.2.1	Establish 288 PPPoE sessions	Pass
2.3.1	Performance forwarding: downstream to 288	Pass
	PPPoE clients	
2.3.2	Performance forwarding: upstream from 288 PPPoE	Pass
	clients	
2.3.3	Performance forwarding: upstream and downstream	Pass
	from/to 288 PPPoE clients	
2.4.1	Time to restore 288 PPPoE sessions after BRAS	Pass
	reboot	
2.5.1	Dynamic configuration: add a subscriber	Pass
2.5.2	Dynamic configuration: connect new subscribers to	Pass
	BRAS	
2.5.3	Dynamic configuration: delete a subscriber	Pass
2.5.4	Dynamic configuration: delete service provider	Pass
2.6.1	QoS performance – medium configuration	Pass
3.1.1	Command line configuration: add_sp_large	Pass
3.1.2	Command line configuration: add_sub_large	Pass
3.2.1	Establish 1024 PPPoE sessions	Pass
3.3.1	Performance forwarding: downstream to 1024	Pass
	PPPoE clients	
3.3.2	Performance forwarding: upstream from 1024	Pass

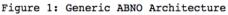
- Average 3 Million Packets Per Second per Logical Core for PPPoE processing.
 - Equivalent to 94 M PPS/97 Gbps per Blade = 1.5 G PPS/1.5 Tbps per 10 U chassis¹.
 - Test used 1024 PPP sessions & strict priority QoS
 - Test used an Intel® Xeon® E5655 @ 3.0 GHz, 8 physical cores, 16 logical cores (not all used).
- Scaled to 9K PPPoE sessions per vBRAS.
 - Support of 3 vBRAS per server.
 - Subsequent BT research:
 - Implemented & testing software Hierarchical QoS.
 - Results so far show processing is still not the bottleneck.
 - Also tested vCDN performance & video quality.

"Performance potential to match the performance per footprint of existing BRAS equipment."

[1] Using128 byte packets. A single logical core handles traffic only in one direction so figures quoted are half-duplex.
 [2] <u>http://www.btplc.com/Innovation/News/NetworkVirtualization.htm</u>

Next Steps – Management & Orchestration


- Management & Service Orchestration
 - Discovery of network resources.
 - Routing and path computation.
 - Network resource abstraction, and presentation to application layer.
 - Multi-layer coordination and interworking.
 - Multi-domain & multi-vendor network resources provisioning through different control mechanisms (e.g., Optical, OpenFlow, GMPLS, MPLS).
 - Policy Control.
 - OAM and performance monitoring.
- Leveraging existing technologies
 - What is currently available?
 - Integrate with existing and developing standards!



Next Steps – Management & Orchestration

- Application-Based Network Operations
 - A PCE-based Architecture for Application-based Network Operations

- draft-farrkingel-pce-abno-architecture
- "Standardised" components
 - Policy Management
 - Network Topology
 - LSP-DB
 - TED
 - Path Computation and Traffic Engineering
 - PCE, PCC
 - Stateful & Stateless
 - Online & Offline
 - P2P, P2MP, MP2MP
 - Multi-layer Coordination
 - Virtual Network Topology Manager
 - Network Signaling & Programming
 - RSVP-TE
 - ForCES and OpenFlow
 - Interface to the Routing System (I2RS)

Next Steps – Currently

- Publish "Survey" results and findings.
- Developing orchestration and provisioning architecture and components for NFV applications
 - "Application-Based Network Operations (ABNO)" as an IETF Standard
- Documenting technical gaps for resiliency and restoration across use cases:
 - "Use cases and Requirements for Virtual Service Node Pool Management"
 - "An Overview of Reliable Service Nodes Discovery and Provision Protocols"
- Build Something!

Thank You!

Any comments or questions are welcome.

Daniel King **PhD Student – Lancaster University** <u>d.king@lancaster.ac.uk</u>