Resilient Networking for Emergency Scenarios

Gareth Tyson

Peng Jiang, John Bigham, Eliane Bodenese

Queen Mary
University of London

- India-UK Advanced Technology Centre
 - St. Andrews, Cambridge, Lancaster, Surrey, UCL, Southampton, Bristol, Ulster, BT
 - Several Indian partners

Part of UK-India Education and Research Initiative

Ocycial illulair

BIS

Department for Business Innovation & Skills

Department of Science and Technology
Government of India

y Centre ncaster, Surrey,

- A key work package on management of emergency situations
- A critical challenge in India
 - E.g. earthquakes

manageme situations

A critical cl

E.g.

Flooding

- Flooding
- Fire

- Flooding
- Fire
- Volcanoes

- Flooding
- Fire
- Volcanoes
- Mountain rescue

- Flooding
- Fire
- Volcanoes
- Mountain rescue
- Collapsed building
- Terrorist attacks

- Flooding
- Fire
- Volcanoes
- Mountain rescue
- Collapsed building
- Terrorist attacks

Events that lead to significant human risks

Emergency scenarios can lead to network collapse

Infrastructural issues

- Base stations/APs
 - Physically damaged
 - Overloaded
 - Not present
- Network cabling
 - Physical vs logical topologies
- Internet exchange points
 - Heavily co-located infrastructure

Infrastructural issues

Severed cabling

A network designed to survive and facilitate recovery during an emergency

Disaster zone

What does an emergency network need?

What does an emergency network need?

Resilience

What does an emergency network need?

Resilience

At every component in the network

IU-ATC's approach

- Paradigm choices
 - Delay tolerant infrastructure
 - Message-oriented abstraction
 - Nodes can publish/subscribe
- Implementation choices
 - Hastily deployed infrastructure
 - Resilient back-end
 - Doesn't require resilience core

Hastily formed network

Back haul link

Back haul link

Core network

MOM Broker

MOM Broker

Preliminary Investigation:

DTNs

Preliminary Investigation: DTNs

- QMUL map
 - Civilians move around paths at 30m-60m/min
- Civilians broadcast help beacons
 - 1 every 3 minutes
- Four rescue teams
 - Fixed locations

An alternative approach?

- Integrate ICN principles
 - Naturally delay tolerant
 - Often emergency communications are pub/sub
- Resilience a monotonically decreasing function of hop count
 - With each hop comes added risks
- ICN offers explicit resilience through caching

Conclusion

- Discussed challenges of emergency networking
- Presented IU-ATC's approach
 - Explored weaknesses
 - Explored future work

Thanks!