
WEDGE: A Wide-area Efficiently Distributed Graph Engine

Presenter: Karthik Nilakant

Supervisor: Dr Eiko Yoneki

MSN ‘12

133h April 2012

1

Motivation

“Wide area”

There are a variety of use cases for

geographic dispersion of data:

•Data may be generated globally

•Want to take advantage of regional

price differences in cloud computing

services

•Energy saving

•Hybrid clouds

HOWEVER current systems focus

on single datacentre environments

“Graph processing”

Many large datasets are graph-

structured – e.g. The web graph,

social networks, transport / traffic,

recommendation networks,

bioinformatic data.

Users have a need to process this

data in various ways (searching,

ranking, clustering, etc).

HOWEVER, the predominant map-

reduce model is not well-suited to

this.

2

The Data Locality Challenge

• “Data-parallelism” is at the core of processing frameworks such as

Hadoop.

• We parallelise by splitting up data and processing with independent

tasks. This is usually a local operation.

• The challenge arises from the need to collate the results (“reduction”).

In the map-reduce model, this requires shuffling.

3

Brief overview of MapReduce

• map() takes an input split and produces zero or more intermediate key-

value pairs.

• reduce() (or “fold”) takes a set of intermediate key-values with a

common key, and produces output.

• The framework arranges for source data to be distributed amongst a

group of mappers, and then arranges for intermediate data to flow from

mappers to one or more reducers

4

NodeA1

NodeA2

...

NodeB1

NodeB2

Source

data

5

NodeA1

NodeA2

...

NodeB1

NodeB2

6

NodeA1

NodeA2

...

NodeB1

NodeB2

7

Site

RackA

NodeA1

NodeA2

...

RackB
NodeB1

NodeB2

8

Example

“Unbalanced Reduction”

• Trade-off between work distribution and data locality

• How to partition key-values?

• Programming constraint: all instances of a key map to single reducer

• Attempts to improve locality may affect the functionality of the task

Uneven

distribution
Increased traffic to

remote reducers

9

Effects of imbalance

10

0

50

100

150

200

250

300

350

400

A
v

e
ra

g
e
 r

u
n

ti
m

e
 (

s
)

Data layout

5000

10000

20000

0

2000

4000

6000

8000

10000

12000

14000

10000 100000 1000000

A
v

e
ra

g
e
 r

u
n

ti
m

e
 (

s
)

Inter-subnet bandwidth

50/50

100/0

Current mitigation strategies

• Framework tuning

• Problematic due to large parameter space; may be counterproductive

(requires trial and error)

• Programmatic

• Custom partitioning; custom combiners; domain-specific optimisation

• Reactive scheduling

• Straggler detection (LATE etc)

• Speculative execution

11

But the core problem remains...

12

Data-

parallel

workers

Individual traffic channels

may vary, and cannot be

predicted in advance

Collation

workers

Individual traffic channels

may vary, framework

assumes even distribution

Unwieldy for the wide-

area: we can’t identify

individual traffic flows.

Unwieldy for graph

processing: need to

pass state between

iterations

Bulk Synchronous Parallel

• BSP offers an alternative approach for graph processing (as used by

Pregel)

• Step 1: For each vertex in the graph, we process local data in parallel.

• Step 2: Each vertex then generates updates to be passed to immediate

neighbours in the graph.

• Step 3: We impose a synchronisation barrier to ensure all updates are

propagated.

• Step 4: Iterate.

13

Insight: shuffling becomes message passing

• How can we minimise the amount of message passing in this model?

• Answer: re-partition the graph

14

Approaches to graph partitioning

• In HDFS-style systems, typically a background process is responsible

for rebalancing data.

• In WEDGE, a similar process would operate on the graph, by identifying

optimal partitions and re-organising data.

• Could use minimal/balanced cut approaches (such as ParMETIS).

These produce well-partitioned graphs, but are computationally

expensive.

• Community detection methods offer a heuristic approach based on

modularity maximisation. Less overhead, but possibly lower yield.

• Could offer a range of strategies to the user.

15

WEDGE: The broader framework

• Three desirable properties:

• Algorithmic flexibility

• CIEL offers the building blocks.

• Partition-tolerance

• Need to re-fashion CIEL to deal with the wide area

• Locality optimisation (graph partitioning)

• Need to integrated with existing resource-management capability

16

Summary

• There are a range of motivating factors for wide-area graph processing

• Hadoop is neither well-suited to graphs nor the wide area

• We need to explore alternative programming models – BSP is one

possibility.

• We can optimise message passing in the BSP model by re-partitioning

the graph.

• Community-structured partitions should also facilitate efficient graph

processing in other programming models.

17

