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Motivation 

“Wide area” 

There are a variety of use cases for 

geographic dispersion of data: 

•Data may be generated globally 

•Want to take advantage of regional 

price differences in cloud computing 

services 

•Energy saving 

•Hybrid clouds 

 

 

HOWEVER current systems focus 

on single datacentre environments 

“Graph processing” 

Many large datasets are graph-

structured – e.g. The web graph, 

social networks, transport / traffic, 

recommendation networks, 

bioinformatic data. 

 

Users have a need to process this 

data in various ways (searching, 

ranking, clustering, etc). 

 

HOWEVER, the predominant map-

reduce model is not well-suited to 

this. 
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The Data Locality Challenge  

• “Data-parallelism” is at the core of processing frameworks such as 

Hadoop. 

• We parallelise by splitting up data and processing with independent 

tasks. This is usually a local operation. 

• The challenge arises from the need to collate the results (“reduction”). 

In the map-reduce model, this requires shuffling. 
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Brief overview of MapReduce 

• map() takes an input split and produces zero or more intermediate key-

value pairs. 

• reduce() (or “fold”) takes a set of intermediate key-values with a 

common key, and produces output. 

• The framework arranges for source data to be distributed amongst a 

group of mappers, and then arranges for intermediate data to flow from 

mappers to one or more reducers 
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Example 

“Unbalanced Reduction” 

 

 

 

 

 

 

 

 

• Trade-off between work distribution and data locality 

• How to partition key-values? 

• Programming constraint: all instances of a key map to single reducer 

• Attempts to improve locality may affect the functionality of the task 

 

Uneven 

distribution 
Increased traffic  to 

remote reducers 
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Effects of imbalance 
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Current mitigation strategies 

• Framework tuning 

• Problematic due to large parameter space; may be counterproductive 

(requires trial and error) 

• Programmatic 

• Custom partitioning; custom combiners; domain-specific optimisation 

• Reactive scheduling 

• Straggler detection (LATE etc) 

• Speculative execution 
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But the core problem remains... 
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Data-

parallel 

workers 

Individual traffic channels 

may vary, and cannot be 

predicted in advance 

Collation 

workers 

Individual traffic channels 

may vary, framework 

assumes even distribution 

Unwieldy for the wide-

area: we can’t identify 

individual traffic flows. 

 

Unwieldy for graph 

processing: need to 

pass state between 

iterations 



Bulk Synchronous Parallel 

• BSP offers an alternative approach for graph processing (as used by 

Pregel) 

• Step 1: For each vertex in the graph, we process local data in parallel. 

• Step 2: Each vertex then generates updates to be passed to immediate 

neighbours in the graph. 

• Step 3: We impose a synchronisation barrier to ensure all updates are 

propagated. 

• Step 4: Iterate. 
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Insight: shuffling becomes message passing 

• How can we minimise the amount of message passing in this model? 

• Answer: re-partition the graph 
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Approaches to graph partitioning 

• In HDFS-style systems, typically a background process is responsible 

for rebalancing data. 

• In WEDGE, a similar process would operate on the graph, by identifying 

optimal partitions and re-organising data. 

• Could use minimal/balanced cut approaches (such as ParMETIS). 

These produce well-partitioned graphs, but are computationally 

expensive. 

• Community detection methods offer a heuristic approach based on 

modularity maximisation. Less overhead, but possibly lower yield. 

• Could offer a range of strategies to the user. 
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WEDGE: The broader framework 

• Three desirable properties: 

• Algorithmic flexibility 

• CIEL offers the building blocks. 

• Partition-tolerance 

• Need to re-fashion CIEL to deal with the wide area 

• Locality optimisation (graph partitioning) 

• Need to integrated with existing resource-management capability 
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Summary 

• There are a range of motivating factors for wide-area graph processing 

• Hadoop is neither well-suited to graphs nor the wide area 

• We need to explore alternative programming models – BSP is one 

possibility. 

• We can optimise message passing in the BSP model by re-partitioning 

the graph. 

• Community-structured partitions should also facilitate efficient graph 

processing in other programming models. 
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