

Supporting VoIP in IEEE802.11 Distributed WLANs

Zuo Liu Supervisor: Dr. Nick Filer

July 2012

Issues for VoIP in IEEE802.11 WLAN 1

Shared Wireless Channel

- Overhead by contending for transmission opportunity (CSMA/CA)
- More contentions for VoIP traffic

Issues for VoIP in IEEE802.11 WLAN 2

Very Low Efficiency over Wireless Channel

- Control data overhead is too large
- Payload is tiny for each voice packet

Delay Accumulation

8

Round Trip Time in Real 802.11 WLAN

Average RTT Measured by VoIP-RTT-Emulator in Real IEEE802.11b/g Distributed WLAN

The University of Manchester

Simulated Congestion Test

Normalised Packet Delivery Rate within 150 ms Delay Budget after Network Congestion Happens in Simulated IEEE802.11 Distributed WLAN 0.9 Packet Delivery Rate within 150 ms → 10 Calls 0.8 ----I2 Calls 0.7 - 14 Calls 0.6 0.5 16 Calls \rightarrow 0.4 0.3 0.2 0. I 0 15 20 5 10 25 0

Time in Seconds After Network Congestion

Auto Cleaning Queue (ACQ)

Stale Voice Packets in Outgoing Buffer

- Not possible being delivered in time
- Receiver end already played a pseudo sample
- Wasted transmission opportunity
- Related Work
 - Dynamic buffer size
 - Drop front/random drop (mainly for TCP)
- ACQ
 - Actively dropping voice packets older than T_{MAX}
 - Giving transmission opportunity to 'fresh' voice packets

Fresh

Packet

Fresh

Packet

Stale

Packet

Stale

Packet

Compatible with IEEE802.11eVoice (AC_VO) queue

Fresh

Packet

ACQ Evaluation 1

ACQ Evaluation 2

SPAWN Packet En-queue Process

15

SPAWN Block Structure

- Compatible with IEEE802.11
 - No modification on frame header and structure
 - No extra operations required below LLC layer
 - IEEE802.11n aggregation (A-MPDU) resulting in new MAC protocol
- Flexible for Efficiency
 - Variable number of packets
 - Not forced to reach the maximum payload size

SPAWN Evaluation 1

Average Transmission Latency for VoIP Traffic over Simulated IEEE802.11 WLAN

18

SPAWN Evaluation 2

Normalised Packet Delivery Ratio within 150 Milliseconds Delay Budget for VoIP Calls in Simulated IEEE802.11 Distributed WLAN

| |9

Conclusions

Outcomes

- Similar behaviour for VoIP over distributed and infrastructure WLANs
- Delay accumulation after congestion
- ACQ resolves the delay accumulation
- SPAWN effectively increases the network efficiency
- Compatible with IEEE802.11a/b/g MAC and IEEE802.11e

Future Work

- ACQ and SPAWN in real devices (seeking partners)
- Dynamic T_{MAX} for ACQ
- Multicasting SPAWN
- Multi hops, multi flows, multi traffic types, etc.

Thank you! & Questions?

liuza@cs.man.ac.uk