Position-based Routing for Wireless Networks: A Re-analysis

Marwan Fayed (with David Cairns) mmf@cs.stir.ac.uk

Cosener's 2012 13 July 2012

Concluding Remark

- Guaranteed Delivery may be 'over-rated' in some situations
 - Where non-routing elements are likely to be cause of packet loss
 - When the complexity of delivering the last x% has a negative effect on resources.

Context

- Large number of wireless nodes
- Limited resources
 - Traditional meaning: energy, space, computation
 - Alternative meaning: scale in a mobile env.
 - (Potentially) lack of infrastructure.
- Self-organising
 - Loose definition: no manual intervention.
- Mobility

Routing remains a challenge

- Scale of routing tables
 - No aggregated or hierarchical naming
- Effect of shared medium:
 - Does routing setup and exchange impedes utilization?
 - (We generally assume that it does, though this is unclear.)
- Mobility and availability complicate matters.
- All challenges exacerbated if resources are limited.

Holy Grail: Position-based Routing

- Local decisions
 - no broadcast, or forwarding of routing info beyond 1-hop
- Fixed memory
 - Routing table consists of 1-hop neighours
- Greedy forwarding:
 - Reduce distance to destination
- May be seen as an optimization problem
 - Any optimization may find a local minimum!
 - Some 'recovery' method is required.

Escape from Local Minima

- 'Left-hand rule' (LHR)
 - escape from a maze

May take longer path

Defeated by intersections.

Planarity as a Solution

Planar graph + left-hand traversals = unique faces!

Planarity in the Real World

- Localised protocols:
 - Connectivity only guaranteed under unit-disc model
 - Known to be unrealistic in practice.
 - eg. GPSR, GoAFR
- Cooperative protocols:
 - Work in arbitrary network graphs
 - Complex setup & high messaging complexity
 - May be 'over-solving' the problem
 - eg. GDSTR, (Lazy-)CLDP.
- Neither solution is ideal.

Challenging Theorem (2009):

Given k hops of information in an arbitrary graph, there exists no deterministic local algorithm (that can guarantee delivery).

- Intuition: Given k hops, an offending configuration can always be constructed at k+1 hops.
- Two alternatives
 - Constrain the network graph (all prev work)
 - Understand and attack the causes for failure in the graph.

Back to First Principles

- Consider any intersection of two links.
- Initially, restrict to unit disc graph
- Ask: What sides of 4-gon may exist?

All Intersections Exist as One of Five

Three possible intersections in UDG

Only the 'umbrella' shape matters.

The Prohibitive Link

- Guaranteed delivery in the unit disc:
 - Remove all prohibitive links.
- Applicable to any face-routing scheme.

Now Arbitrary Graphs

- 3 remaining configurations
- Last case reduces to one of remaining 5.

Intersections 4 and 5

• 1-sided 4-gon is no issue

- 0-sided either
 - Two- separate networks,
 - Otherwise reduces to another config

Last one.

- Defeats LHR unless
 - allow packet to record its traversal,
 - Skip links that intersect.

Back to Umbrella

- How frequently does it appear?
- Umbrella appearance, irrespective of constraints:

Network Size (Density)	Node Distribution	Ratio U/I		
	uniform	0.013		
1500 (7.5)	norm	0.013		
	${ m skew}$	0.011		

So, does it matter?

Additional constraints req'd

Only Umbrella Defeats LHR

- Only under strict conditions:
 - 1. Packet must be in recovery
 - Umbrella must be encountered from 'outside'
 - Must be no alternate path.

What happens if we ignore it?

Hop stretch ~ LCLDP

Message overhead

Worst cases never appear, so...

		Path Stretch				Message Overhead			
		GDSTR	CLDP	LCR	PLRP	GDSTR	CLDP	LCR	PLRP
(a)	37->41	5	9	7	7	624	245	0	0
(b)	51->54	4	6	6	11	792	227	227	6
(c)	17->22	5	10	15	15	774	298	0	8

TutorNet (USC) 14

	Path Stretch				Message Overhead			
	GDSTR	CLDP	LCLDP	PLRP	GDSTR	CLDP	LCR	PLRP
3->14	9	8	8	29	1641	1082	1082	0

Remarks & Open Questions

- Always pays to understand root causes for failure
- Current solutions may be 'over-solving' the problem
 - Problem cases rarely appear
 - Their solutions are complex

- Future & Open Questions:
 - Trade-off between knowledge/setup & path stretch?
 - Do high setup & maintenance costs even matter?
 - Larger performance gain in dynamic/mobile networks?

In General

- Guaranteed Delivery may be 'over-rated' in some situations
 - Where non-routing elements are likely to be cause of packet loss
 - When the complexity of delivering the last x% has a negative effect on resources.