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Motivation

• Future digital services are reliant on 
power efficient computers

– Data centres, large servers, scientific 
computing

• Power management is now the 
primary issue

– 200 W/chip thermal limit reached

– Interconnect accounts for majority of 
power consumption

• Transistors scale, wires don’t

• Can’t continue to exploit Moore’s Law 
without dealing with interconnect 
power issue

• Many developments are addressing 
this issue:

– 3D stacked memory

– Non-volatile ‘unified’ memory

– Photonic interconnect 
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Components of a Photonic C2C Interconnect
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Characteristics of Photonic Networks

• Photonics offers very high 
bandwidth (WDM) over long 
distances with lower power

• Photonics favours circuit 
switching

– No viable optical buffer exists

– End-to-end paths required

• Computer architectures favours 
packet switching 

– Message sizes in Shared Memory 
systems ≥ 64-bits

• Design implications of complete 
computer systems with photonic 
interconnect are not clear
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On-chip Lasers or Off-chip Power Supply

• On chip laser approach

‒ Avoid losses in distribution and getting 
light onto chip

‒ Can be rapidly power gated (≈ns) 

• Photonic power supply (PPS) approach

‒ Only compact and low drive power 
components need to be on-chip

‒ Single optical power supply can be used 
for multiple devices

• We can’t store photons – any 
generated light is dissipated mainly on-
chip

• Unlikely that efficiency of optical power 
supply will be >20%

‒ Efficiency of electronic power supply can 
be >80% and is naturally dynamic
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Photonic Networks for Data Centres  - Vision

• Scalability of the all-optical network is 
limited to around 64 ports, rack 
network

‒ Optical power and attenuation

‒ Latency and complexity of 
Arbitration/Contention resolution

• Expandable using OEO sections
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Methodology
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• Modelled the power consumption of the photonic path using the photonic power 
supply approach

• Created SystemVerilog models of the network control circuits and synthesized 
using a low leakage 45 nm CMOS process

• Evaluated the power consumption of circuit switched and time slotted networks 
covering a single rack

– How much power is disipated on-chip?

– What can be power gated?



Networks: Circuit Switching

• Electronic Network is 
required for residual flows

• Analysis of the traffic 
patterns generated running 
the PARSEC benchmark 
suite on simulated 32-core 
x86 system running Linux

• Observe the effect of 
changing the circuit decision 
time
– Circuit decisions are ideal 

(a priori knowledge of traffic)  



Energy per bit – Circuit Switching
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Electronic Packet Switch

Setting up 

circuits on μs 

timescales 

required

Only 1.0 –

3.2 packets 

on average 

per circuit

No significant 

advantage in 

static case

Ring resonator Clos switch assumed



Time Slotted Networks

Scheduled Speculative

Intra-Rack Network Latency

Time slots are 10 ns, sized 

for transmission of a single 

32B cache line

Speculative does not allow 

power gating of PPS



Time Slotted Network
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SOA Switch
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Time slotted networks can be > order of magnitude lower power 

than electronic mesh network 



Sources of Power  - Time Slotted Network 

Total Network Power, including PPS (W)



Sources of Power – Time Slotted Network

Power Dissipation on the Processor Chip, including PPS



Summary

• Photonic time slotted networks can reduce power 

consumption by > order of magnitude

– Total network power

– Processor chip dissipation

• Further work required to understand how these 

networks scale under realistic data centre traffic 

patterns

• Transceiver power consumption is significant 

proportion of on-chip disipation

– Yury will tell you more in next talk




