

InfoLab21

Network Traffic Characterization using Energy TF Distributions

Computing Department Faculty of Applied Sciences

Department of Computing Science

Angelos K. Marnerides

a.marnerides@comp.lancs.ac.uk

Collaborators: David Hutchison - Lancaster University Dimitrios P. Pezaros - University of Glasgow Hyun-chul Kim -Seoul National University

Outline

- Motivation
- Approach
- Data & Features
- Results
- Summary
- On-going & Future Work

Importance of Traffic Characterization & Classification

Weakness of manual inspection by NOCs

Com

- Pre-requisite for understanding the fluctuant network behavior
- Foundational element for Traffic Engineering (TE) tasks:
 cost optimization ,efficient routing, congestion management, availability, resilience, anomaly detection, traffic classification etc..
- Application-based traffic Classification : a necessity
 - net neutrality debate, ISPs vs. Content providers
 - emergence of new applications, attacks etc..
 - file sharing vs. intellectual property representatives

Motivation

Traffic modeling assumptions not thoroughly investigated
 Stationarity?

Rapid growth of new Internet technologies and applications.

Essence for new and adaptive traffic classification features.

Approach

- Volume-based analysis on real pre-captured network traces for characterizing the traffic's dynamics.
- Validation of stationarity under TF representations

Com

- Instantaneous frequency and group delay for stationarity.
- Volume decomposition for revealing protocol-specific dynamics and classify the volume-wise utilization (#bytes and #pkts) of the transport layer.
- Provision of application-layer characteristics based on the level of signal complexity using the Cohen-based Energy TF Distributions.

Data & Features

- 2 30min full pcap traces from a Gb Ethernet Link at Keio University, Japan (Keio-I, Keio-II)
 - extracted # of bytes & pkts for each unidirectional flow for TCP,UDP, ICMP

- Hour-long full pcap trace from a US-JP link (WIDE) 100 Mbps FastEthernet link (SamplePoint B – MAWI Working group)
 - divided in 4, 13.75-min bins (WIDE-I,WIDE-II,WIDE-II,WIDE-IV)
 - -employed the same feature extraction as in Keio-I/II

Data & Features (tables)

Table 1: Captured Operational Traces from WIDE & Keio

Set	Date	Day	Start	Duration	Link Type	Packets	Bytes	Avg. Util.	Flows/min
WIDE	03-03-2006	Fri	22:45	55min	Backbone	32M	14G	35Mbps	63K
Keio-I	06-08-2006	Tue	19:43	30min	Edge	27M	16G	75Mbps	32K
Keio-II	10-08-2006	Thu	01:18	30min	Edge	25M	16G	75Mbps	19K

Table 2: Traces pre-processing

Set	Duration	TCP flows/min	UDP flows/min	ICMP flows/min
WIDE-I	13.75min	24K	30K	4K
WIDE-II	13.75min	28K	31K	4K
WIDE-III	13.75min	24K	29K	3K
WIDE-IV	13.75min	23K	30K	4K
Keio-I	30min	21K	10K	6K
Keio-II	30min	8K.	9K	4K

* Kim et al. L., Internet traffic classification demystified: myths, caveats, and the best practices, ACM CoNEXT 2008

Stationarity Test

 A signal is stationary if the elements in its analytical form keep a constant instantaneous frequency and group delay respectively.

Process g(t) (counts of bytes/packets), and $G_a(t)$ its analytical form after applying a Hilbert transformation and $F_a(v)$ the Fourier transform of $G_a(t)$

• Instantaneous Frequency
$$\rightarrow f(t) = \frac{1}{2\pi} \frac{d \arg G_a(t)}{dt}$$

- f(t): amplitude of frequency we observe in 1 count of a packet/byte arrival at time t

Group Delay
$$\rightarrow t_G(v) = -\frac{1}{2\pi} \frac{d \arg F_a(v)}{dv}$$

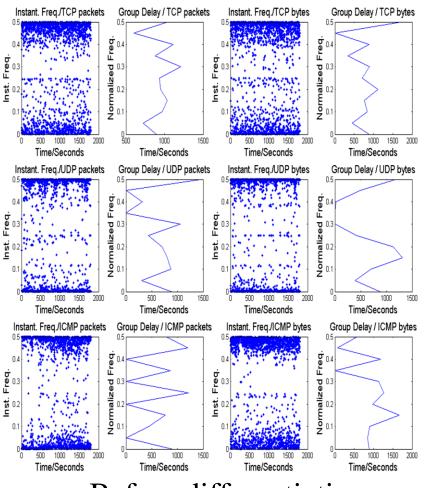
Come

- $t_G(v)$ time distortion caused by the signal's instantaneous frequency

Stationarity analysis

- Validation of instantaneous frequency and group delay's behaviour in all datasets.
- Investigated stationarity on ithe original and differentiated traffic signal
- Conclusion : traffic in all traces is highly non-stationary and has the form of a multi-component signal (for all protocols).

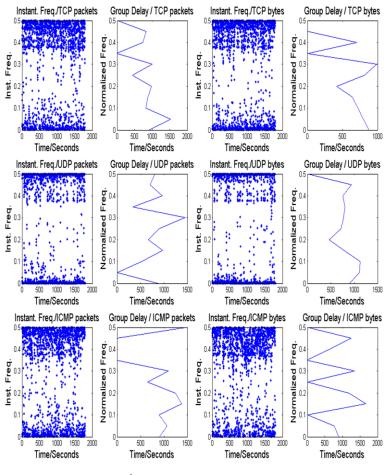
Stationarity analysis (results)



Keio-I Stationarity Analysis

Computing

Before differentiation



Keio-I Stationarity Analysis (diff = 3)

LANCASTER

After 3rd order differentiation

Traffic Classification with Cohenbased Energy TF distributions

 Suitable for characterizing highly non-stationary signals as the volume dynamics of the transport layer.

- Overcome limitations by other techniques (e.g. STFT, Wavelets) on the TF plane with respect to TF localization and resolution

- Particularly used *:
 Wigner-Ville (WV) Distribution
 Smoothed Pseudo Wigner-Ville (SPWV) Distribution
 Choi-Williams (CW) Distribution
- Employment of Renyi Dimension for determining signal complexity (i.e. volume-wise intensity) on the TF plane used as the classification discriminative feature
- Simple Decision tree-based classification using MATLAB's classification utility functions

Classification Performance Metrics

Accuracy per-trace

Accuracy =
$$\frac{\#correcty_classified_flows}{\#total_flows_per_trace}$$

Per-Application

- Recall : "How complete is an application fingerprint?"

$$Re\,call = \frac{True_positives}{True_positives + False_negatives}$$

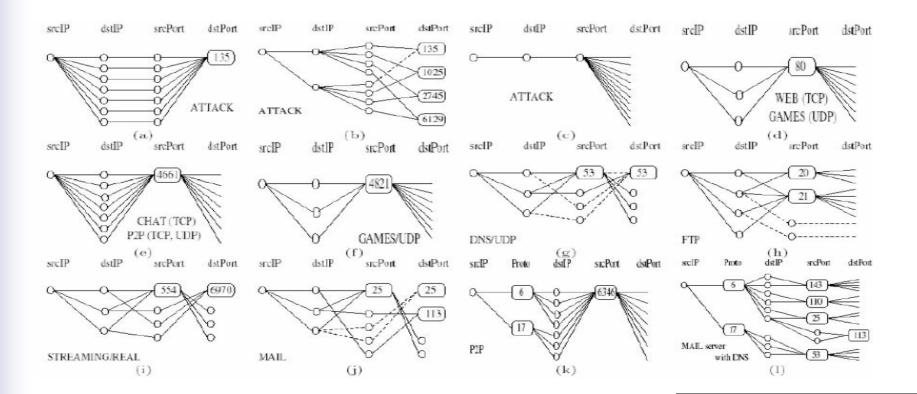
Pre-processing for Traffic Classification

ANCASTER

Extensive port and host-behaviour-based approach

Usage of graphlets from BLINC

Computing

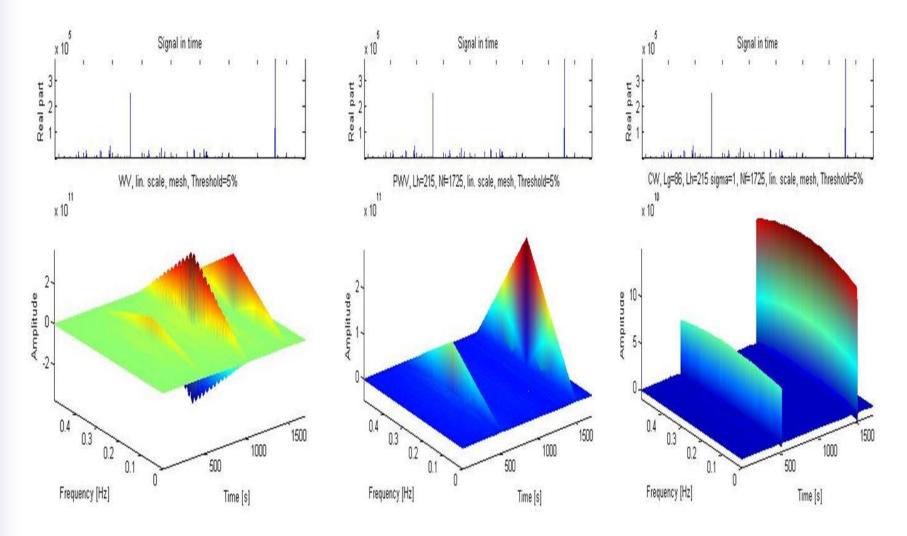


Pre-processing for Traffic Classification (cont..)

- Keio-I : training set , Keio-II : test set
- Computation of each energy distribution for every application protocol individually based on the packet and byte-wise utilization of TCP & UDP.
- Comparison between distributions.
- Extraction of the Renyi Dimension for every application protocol from the selected TF distribution.

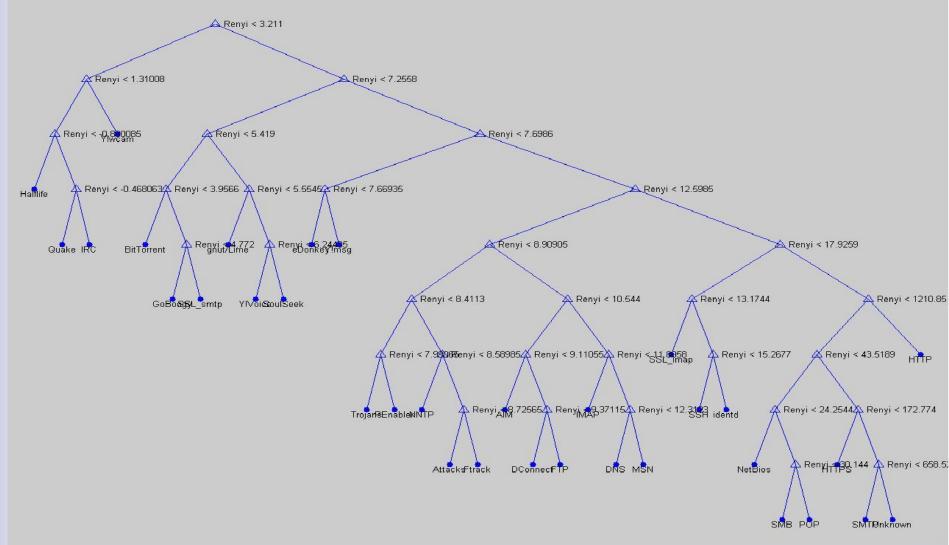
Computing

Comparison of energy TF distributions (example : Keio TCP bytes for MSN)



Computing Results (example: Classification of TCP bytes for Keio trace - SPWV)

LANCASTER



Results (cont)

Overall Accuracy

Keio trace : 95%(pkts) 93%(bytes)

WIDE trace : 92% (pkts) 88% (bytes)

Traffic Cat.	Recall% (bytes)	Recall% (pkts)
WWW	>=90.4%	>=95.8%
FTP	>=94.5%	>=97.3%
P2P	>=84.8%	>=91.9%
DNS	>=95.6%	>=98.6%
Mail/News	>=93.3%	>=97.8%
Streaming	>=81.3%	>=92.2%
Net. Ops.	>=96.8%	>=94.1%
Encryption	>=95.3%	>=89.8%
Games	>=89.3%	>=93.9%
Chat	>=82.1%	>=92.7%
Attack	>=78.9%	>=88.6%

Summary

- Backbone and Edge network link traffic is highly non-stationary.
- Suitability of Energy TF distributions for general traffic profiling.
- Practical usability presented particularly in the area of traffic classification.
- Introduction of complexity-based traffic classification based on the 3rd order Renyi Dimension.
- Packet-based analysis indicated higher accuracy.

On going & Future Work

- New network-oriented features (e.g. 5 tuple)
- New Energy TF metrics (e.g. 1st, 2nd order moment sequence)
- Employment of Support Vector Machines.
- Full, comparison with BLINC on larger datasets.

Thank you 😊