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Importance > of Traffic Characterization
& Classification

= \Weakness of manual inspection by NOCs

= Pre-requisite for understanding the fluctuant network behavior

= Foundational element for Traffic Engineering (TE) tasks:

- cost optimization ,efficient routing, congestion management,
availability, resilience, anomaly detection, traffic classification etc..

= Application-based traffic Classification : a necessity
- net neutrality debate, ISPs vs. Content providers
- emergence of new applications, attacks etc..
- file sharing vs. intellectual property representatives



Ny

s o i LANCASTER
UNIVERSITY

Computing e
Motivation
= Traffic modeling assumptions not thoroughly investigated
- Stationarity?

= Rapid growth of new Internet technologies and
applications.

= Essence for new and adaptive traffic classification
features.
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Approach

= Volume-based analysis on real pre-captured network traces for
characterizing the traffic’'s dynamics.

= Validation of stationarity under TF representations
- Instantaneous frequency and group delay for stationarity.

= Volume decomposition for revealing protocol-specific dynamics and
classify the volume-wise utilization (#bytes and #pkts) of the
transport layer.

= Provision of application-layer characteristics based on the level of
signal complexity using the Cohen-based Energy TF Distributions.
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Data & Features

= 2 30min full pcap traces from a Gb Ethernet Link at Keio
University, Japan (Keio-I, Keio-II)
- extracted # of bytes & pkts for each unidirectional flow for
TCP,UDP, ICMP

= Hour-long full pcap trace from a US-JP link (WIDE) 100
Mbps FastEthernet link (SamplePoint B — MAWI Working

group)
- divided in 4, 13.75-min bins (WIDE-I,WIDE-II,WIDE-
1HI,WIDE-IV)

-employed the same feature extraction as in Keio-I/ll




Computing

LANCASTER
UNIVERSITY

Data & Features (tables)

Table 1: Captured Operational Traces from WIDE & Keio

Set Date Day Start Druration Link Type Packets Bytes Avg. Unl Flows/min
WIDE 03-03-2006 Fri 12:43 55min Backbone 32M 14G 33Mbps 63K
Keio-1 06-03-2006 Tue 19:43 30min Edge 2™ 16G T3Mbps 3K
Keio-II 10-08-2006 Thu 01:18 30min Edge 25M 16G T3Mbps 19K

Table 2: Traces pre-processing
Set Duration TCP UDP ICME
flows/nun flowrs, 'nnin flowrs min
VWIDE-I 13.75mmin 24K 0K 4k
WIDE-IT 13 75man 28K 31K 4K
WIDE-IIT 13 75min 24K 20K 2K
WIDE-IV 13 75mian 23F J0E 4K
Keio-1 3 Oy 21K 10K a1
K eio-II 3O SK OE 4K

* Kim et al. L., Internet traffic classification demystified: myths, caveats,
and the best practices, ACM CoNEXT 2008
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Stationarity Test

A signal is stationary if the elements in its analytical form keep a
constant instantaneous frequency and group delay respectively.

Process g(t) (counts of bytes/packets), and G,(t) its analytical form
after applying a Hilbert transformation and F, (v) the Fourier
transform of G, (t)

1 dargG, (1)
f(t)=
Instantaneous Frequency - 27 dt

- f(t): amplitude of frequency we observe in 1 count of a packet/byte arrival
attime t

1 dargF,(v)
ts(v)=-
Group Delay > 2r  dv

- t.(v) time distortion caused by the signal’'s instantaneous
frequency
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Stationarity analysis

= Validation of instantaneous frequency and group delay’s
behaviour in all datasets.

" |nvestigated stationarity on ithe original and differentiated
traffic signal

= Conclusion : traffic in all traces is highly non-stationary
and has the form of a multi-component signal (for all
protocols).
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Stationarity analysis (results)
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Traffic Classification with Cohen-
based Energy TF distributions

= Suitable for characterizing highly non-stationary signals as the volume
dynamics of the transport layer.

- Overcome limitations by other techniques (e.g. STFT, Wavelets) on the TF
plane with respect to TF localization and resolution

= Particularly used *:
-Wigner-Ville (WV) Distribution
-Smoothed Pseudo Wigner-Ville (SPWYV) Distribution
- Choi-Williams (CW) Distribution

=  Employment of Renyi Dimension for determining signal complexity (i.e.
volume-wise intensity) on the TF plane — used as the classification
discriminative feature

= Simple Decision tree-based classification using MATLAB’s classification
utility functions

-
Definitions provided in : Cohen, L., Time-Frequency Distributions: A Review, Proc IEEE Signal Processing, Vol. 77, 1989



Computing

Classification Performance Metrics

= Accuracy per-trace

#correcty _classified _ flows
#total _ flows per trace

Accuracy =

= Per-Application

- Recall : “How complete is an application fingerprint?”

True __ positives
True _ positives + False _negatives

Recall =
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Pre-processing for Traffic Classification
= Extensive port and host-behaviour-based approach

= Usage of graphlets from BLINC
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Pre- processmg or Tra Ic Classification
(cont..)

= Keio-l : training set , Kelo-ll : test set

= Computation of each energy distribution for every
application protocol individually based on the packet and
byte-wise utilization of TCP & UDP.

= Comparison between distributions.

= Extraction of the Renyi Dimension for every application
protocol from the selected TF distribution.
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Comparison of energy TF distributions (example : Keio TCP
bytes for MSN)
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Results (example' Classification of
TCP bytes for Keio trace - SPWV )
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= Qverall Accuracy

Keio trace : 95%(pkts)

93%(bytes)

WIDE trace : 92% (pkts)

88% (bytes)

Traffic Cat. Recall% Recall%
(bytes) (Pkts)

WWW >=90.4% >=95.8%
FTP >=94.5% >=97.3%
P2P >=84.8% >=91.9%
DNS >=95.6% >=98.6%
Mail/News >=93.3% >=97.8%
Streaming >=81.3% >=92.2%
Net. Ops. >=96.8% >=94.1%
Encryption >=95.3% >=89.8%
Games >=89.3% >=93.9%
Chat >=82.1% >=92.7%
Attack >=78.9% >=88.6%
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Summary

Backbone and Edge network link traffic is highly non-stationary.
Suitability of Energy TF distributions for general traffic profiling.

Practical usability presented particularly in the area of traffic
classification.

Introduction of complexity-based traffic classification based on the 3™
order Renyi Dimension.

Packet-based analysis indicated higher accuracy.
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On going &Future Work

= New network-oriented features (e.g. 5 tuple)

= New Energy TF metrics (e.g. 1st, 2"d order moment
sequence)

= Employment of Support Vector Machines.
= Full, comparison with BLINC on larger datasets.

Thank you ©



