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The Energy Hole Problem

● Uniform distribution of motes

● Regular, periodic reporting

eg. Habitat monitoring

● Many-to-one traffic flow

● Multi-hop communication
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The Energy Hole Problem

● Non-uniform distribution of    
   work

● Central motes die first
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The Energy Hole Problem

● Energy hole appears

● No packets get to sink

● Uniform distribution of location 
and non-uniform distribution of 
work
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Existing Solutions

Avoidance

● Non-uniform distribution

● Power control

● Mobile sink

● Clustering
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Existing Solutions

Mitigation

● Focus on same level balance

● Dynamically switch parents

● Create top load-balanced tree
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DECOR Proposal

DEgree COnstrained Routing

● Construct degree-constrained minimum spanning tree

● Distributed

● Static routes

● Balanced

● No need for location information

● Designed for periodic applications

Trade-off connectivity and latency for extra lifetime
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Assumptions

● Uniform distribution of motes in a circular network

● Single, central sink

● Every mote produces 1 new packet per “round”

● Perfect MAC – no collisions, no interference

● All motes transmit the same distance
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DECOR Preliminaries

Average number of children per parent:

Ratio of motes in level n to motes in level 1:

Level Ratio

1 1

2 3

3 5

4 7

Level Avg Children

1 3

2 1.66667

3 1.4

4 1.286
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DECOR Theory I

● Limit the number of children per parent during tree construction

● All motes have same number of children = balance

● Average number of children per parent usually not a whole number

● Round down to nearest whole number

i.e. 1 for most levels

Very few motes connected to tree
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DECOR Theory II

● Level 1 motes can have 3 children each

● Find levels when ratio to level 1 motes is 

● Have 3 children per parent in those levels

In practice delay by one level because of imperfect uniformity
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DECOR Algorithm

Phase One

● Start with sink

● Leaf motes broadcast “advert” (incl hop count and subtree number)

● Unconnected motes gather all adverts

● Send offer to “best” parent

● Parents gather all offers respond to “best” child

● Rejected motes reevaluate and send new offers

● Wait until all child motes have finished

● Parent signal children to start next round
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Example Subtree After Phase One
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DECOR Algorithm

Phase Two

● Basic distributed minimum spanning tree algorithm

● Motes may only become children of parents in the same original subtree
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Example Subtree After Phase Two
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DECOR Choices

Best Parent

● Maintain network topological shape

● Choose most distant parent

● Use RSSI to indicate distance

Best Child

● Maintain network topological shape

● Not deny children only option

● Choose child with fewest parent options

● Distance as tie-breaker
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Simulation Set-up

● Radius of network defined in terms of transmission range

● Constant density (10 motes per unit area)

● Sink is unconstrained

● Fixed initial energy values (50J)

● Fixed packet size (50 bytes)

● Average results from 200 runs

● Compare basic minimum spanning tree, dynamic scheme and DECOR
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Time to First Mote Death
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Balance
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Connectivity
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Average Latency
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Worst Case Latency
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Discussion

● DECOR provides a large increase in time to first mote death

● Trade-off for lower connectivity and higher latency

● Improvement by much larger factor than trade-offs

● Implicit use of global information
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Further Work

Investigate the effects of:

● Imperfect uniform distribution

● Non-central sink

● In-network aggregation

● Mobility

● Density

● Shadowing /  Random events
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Conclusion

● Energy hole problem has many existing solutions

● DECOR tailored for periodic applications

● Introduces new trade-offs

● Large increase in lifetime for small loss of connectivity and latency
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Thanks for Listening

Any Questions?


