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Part 1

Today’s Internet
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• Link layers (eg Ethernet) are local to a particular link
• Routers look at IP headers to decide how to route a packet.
• TCP provides reliability via retransmission, flow control, etc.
• Application using OS’s TCP API to do its job.
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Fiction!mostly 



What actually happens to TCP in the wild?

 We studied 142 access networks in 24 countries.

 Ran tests to measure what actually happened to TCP.

 Are new options actually permitted?

 Does re-segmentation occur in the network?

 Are sequence numbers modified?

 Do middleboxes proactively ack?



Middleboxes and new TCP Options in SYN

 Middleboxes that remove unknown options are not so rare,
especially on port 80



What actually happens to TCP in the wild?

 Rewrote sequence numbers:  10% of paths (18% on port 80)
 Presumably to improve initial sequence number randomization

 Resegmented data: 3% of paths (13% on port 80)
 Proxy Ack: 3% of paths (7% on port 80)

 Note: all of these paths also removed new options from the
SYN

 Ack data not sent:  26% of paths (33% on port 80) do strange
things if you send an ack for data not yet sent.
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Not to mention…

 NAT
 Pretty nearly ubiquitous, but comparatively benign

 DPI-driven rate limiters
 Lawful intercept equipment
 Application optimizers
 Anything at the server end:

 Firewalls
 Reverse proxies
 Load balancers
 Traffic scrubbers
 Normalizers, etc

Our methodology
will not detect most
of these, but we’re
pretty sure they’re
out there too.



IPv6 will save us!

 No.



Part 2:

Tomorrow’s Internet



Option 1:  Extrapolate the current Internet

 Plenty of box vendors will sell you a solution.
 Whatever you think your problem is.

 Current apps get optimized and set in silicon.
 Future apps tunnelled over HTTP

 (but what do all those port 80 specialized middleboxes do?)

 Impossible to reason about the concatenation of middleboxes.
 If you think STUN/TURN/ICE is hard to reason about, you’ve

not seen anything yet,



Option 2:  Devise a wonderful new Internet
architecture that everyone will love and deploy.



Option 3:  Reverse engineer a new Internet
architecture from the current mess.

 Observation:  The Internet is becoming a concatenation
of IP networks interconnected by L4+ functionality.



A segmented Internet

access core datacentre

IP processing

L4+
processing

L4+
processing

It already looks somewhat like this, but the L4+ processing is
more distributed.



A platform for Change

 Those L4+ platforms need to be more general that
today’s middleboxes.

 More open.

 More upgradable, as new apps arrive.

 Aggregate functionality, so it’s managable.

 Identifiable, so we can reason about them

 Cheap and scalable.



Flowstream
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FreeBSD
+ netmap

Process
(maybe running
Click userspace)
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Xen

ClickOSLuigi Rizzo’s netmap:
Saturate 10Gb/s with 64 byte packets in userspace



Empowering the ends, not just the middle



Types of Processing

1. Monitoring/read-only

2. Drop/filter/rate-limit

3. Redirect (eg tunnel)

4. Tee

5. Rewrite



Authorization

 On-path providers can instantiate flow-processing
functionality.

 Can’t stop them anyway.

 Source and destination also share ownership of a flow.

 Can we allow them to set up flow processing?



Authorization

 Source or destination-initiated processing:

 Need some way to pay.

 Need to avoid hijacking.



Authorization

 Request from destination is simple(ish) to authenticate.
 Simple nonce exchange proves requester is downstream.  May

be sufficient for monitoring, etc.
 Otherwise need to prove address ownership (eg via RPKI)

 Request from source is harder.  Anyone upstream can NAT traffic
to claim ownership.
 Address proof (even using RPKI) only proves requester is on

path upstream.



Becoming on-path

access datacentre

DDoS attack

Can filter here

Prefer to filter
here
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Destination ISP has dynamically extended the
reach of its network



Change Project

 Flow processing as a first class primitive

 Scalable extensible software platform to enable it.

 Mechanisms to remotely authorize instantiation of
processing.

 Protocols to communicate with flow processing
platforms, so we can reason about the network.

http://www.change-project.eu/



Going with the flow…

 Currently flow processing in middleboxes serves to
inhibit new applications.
 Optimization of the present
 Inextensible inflexible network security

 Key question: is it possible to re-claim the middlebox
as a force for enabling end-to-end innovation?


