Flow processing and
the rise of the

middle.

Mark Handley, UCL

With acknowledgments to Michio Honda,
Laurent Mathy, Costin Raiciu, Olivier
Bonaventure, and Felipe Huici.

Part |

Today’s Internet

Protocol Layering

e Link layers (eg Ethernet) are local to a particular link

e Routers look at IP headers to decide how to route a packet.

e TCP provides reliability via retransmission, flow control, etc.
e Application using OS’s TCP API to do its job.

Modem

Web Internet Internet Web
Server Router Router Client

Protocol Layering

* Link layers (eg Ethernet) are local to a particular link
* Routers look at IP headers to decide how ig route a packet.
* TCP provides reliability via retransmisg@® flow control, etc.

Router Client

What actually happens to TCP in the wild?

m VWe studied 42 access networks in 24 countries.

m Ran tests to measure what actually happened to TCP.
o Are new options actually permitted?
o Does re-segmentation occur in the network?
o Are sequence numbers modified?

o Do middleboxes proactively ack?

Middleboxes and new TCP Options in SYN

Observed TCP Port

Behavior 34343 30 443
Passed 129 (96%) 122 (86%) 133(94%)
Removed 6 (4%) 20 (14%) 9 (6%)
Changed 0 (0%) 0 (0%) 0 (0%)
Error 0 (0%) 0 (0%) 0 (0%)
Total 135 (100%) 142 (100%) 142 (100%)

m Middleboxes that remove unknown options are not so rare,
especially on port 80

What actually happens to TCP in the wild?

m Rewrote sequence numbers: |0% of paths (18% on port 80)
o Presumably to improve initial sequence number randomization

m Resegmented data: 3% of paths (13% on port 80)

m Proxy Ack: 3% of paths (/% on port 80)

o Note: all of these paths also removed new options from the
SYN

m Ack data not sent: 26% of paths (33% on port 80) do strange
things iIf you send an ack for data not yet sent.

What actually happens to TCP in the wild?

m Rewrote sequence numbers: 0% of paths (18% on port 80)
o Presumably to improve initial sequence number randomization

m Resegmented data: 3% of paths (13% on port 80)

m Proxy Ack: 3% of paths (/% on port 80)

o Note: all of these paths also removed new options from the
SYN

m Ack data not sent: 26% of paths (33% on port 80) do strange
things iIf you send an ack for data not yet sent.

Not to mention...

m NAT

o Pretty nearly ubiquitous, but comparatively benign

DPI-driven rate limiters

Lawful intercept equipment

Application optimizers

Anything at the server end: Our methodology
frewalls will not detect most
Reverse proxies of these, but we’re

O
O
o Load balancers pretty sure they’re
O
O

Traffic scrubbers
| out there too.
Normalizers, etc

IPv6 will save us!

m No.

Part 2:

Tomorrow’s Internet

Option |: Extrapolate the current Internet

Plenty of box vendors will sell you a solution.
o Whatever you think your problem is.

Current apps get optimized and set in silicon.
Future apps tunnelled over HT TP
o (but what do all those port 80 specialized middleboxes do?)

Impossible to reason about the concatenation of middleboxes.

o If you think STUN/TURN/ICE s hard to reason about, you've
not seen anything vet,

Option 2: Devise a wonderful new Internet
architecture that everyone will love and deploy.

Option 3: Reverse engineer a new Internet
architecture from the current mess.

m Observation: The Internet 1s becoming a concatenation
of IP networks interconnected by L4+ functionality.

A segmented Internet

IP processing

/

L4+ L4+
processing processing

N\

It already looks somewhat like this, but the L4+ processing is
more distributed.

A platform for Change

m [hose L4+ platforms need to be more general that
today's middleboxes.

o More open.

o More upgradable, as new apps arrive.
o Aggregate functionality, so It's managable.
o Identifiable, so we can reason about them

o Cheap and scalable.

Flowstream

switch

NETWORK
4
!

USER INTERFACE

itch
fab

processing module

processing module Module

Host A

control module

"1
1

i

processing module Host B

flow
table

T

T

I

| -

controller

processing module |l Host C

Flowstream

switch

PR ssing module
processing module

control module

Module
Host A

processing module

control module

Module
Host B

Module
Host C

control module

controller | f=======

USER INTERFACE

Flowstream

switch

Pocessing module
processing module

Module
Host A

[progessing module

rocessing module Module

processing module Host B

Module
Host C

control module

USER INTERFACE

L
controller | f=======

Flowstream

Xen

ClickOS '

switch

processing meduyle
processing mosdule

Module
processing module Host B

control module

OpenFlow I

/

switch
fabric

NETWORK
4
!

Module
Host C

control module

flow
table

T

I

L
controller | f=======

USER INTERFACE

Flowstream

switch
processing module [Modul
OpenFlow I\ Host A
\\
S~ control module
o switch .
o fabric ! [processing module |
O‘__’ . processing module Module
E . Host B
z :
: FreeBSD
I ;
flow ; + netmap
table '
A .
I i \ Process
E (maybe running

L
controller | f=======

Click userspace)

USER INTERFACE

Flowstream

Xen

/ switch

ClickOS '

Luigi Rizzo’s netmap:

Saturate | ?GGb/s W|th 64 byte packets in userspace

14 ;/ .«;" ":-. - i Module

w12 / i 7/ Host B
Q / ,f *
o £
s 10 [/ 7 FreeBSD
r 6 lif |
FA 4 cores

D |- '] 2 cores - P—] p

0 1 qore :.. rocess

(maybe running
Click userspace)

0 0.5 1 15 2 2.9 3
Clock speed (GHz)

Empowering the ends, not just the middle

ON PATH FLOW PROCESSING

flowstream B

%--.-
...
] -
Se
] -~
L]
.
.

flowstream A

VIRTUAL NETWORK

Types of Processing

. Monitoring/read-only
2. Dropl/filter/rate-limit

3. Redirect (eg tunnel)
4. Tee

5. Rewrite

Authorization

m On-path providers can instantiate flow-processing
functionalrty.

o Can't stop them anyway.

m Source and destination also share ownership of a flow.

o Can we allow them to set up flow processing?

Authorization

m Source or destination-initiated processing:
o Need some way to pay.

o Need to avoid hijacking.

Authorization

m Request from destination is simple(ish) to authenticate.

o Simple nonce exchange proves requester is downstream. May
be sufficient for monitoring, etc.

o Otherwise need to prove address ownership (eg via RPKI)

m Request from source Is harder. Anyone upstream can NAT traffic
to claim ownership.

o Address proof (even using RPKI) only proves requester is on
path upstream.

Becoming on-path

Prefer to filter

Can filter here

DDoS attack

Becoming on-path

DDoS attack

Becoming on-path

'A‘

—
5
5
: »

Destination ISP has dynamically extended the
reach of its network

+ 8%

CHESN

http://www.change-project.eu/

m Flow processing as a first class primitive
m Scalable extensible software platform to enable It.

m Mechanisms to remotely authorize instantiation of
Drocessing.

m Protocols to communicate with flow processing
platforms, so we can reason about the network.

Going with the flow...

m Currently flow processing in middleboxes serves to
inhibrt new applications.

o Optimization of the present
o Inextensible inflexible network security

m Key question: is it possible to re-claim the middlebox
as a force for enabling end-to-end innovation?

