
Flow processing and
the rise of the
middle.

Mark Handley, UCL
With acknowledgments to Michio Honda,
Laurent Mathy, Costin Raiciu, Olivier
Bonaventure, and Felipe Huici.

Part 1

Today’s Internet

Protocol Layering

IP IP IP IP

TCP TCP

HTTP HTTP

Ethernet ModemEthernet ATM ATM Modem

Web
Server

Internet
Router

Internet
Router

Web
Client

• Link layers (eg Ethernet) are local to a particular link
• Routers look at IP headers to decide how to route a packet.
• TCP provides reliability via retransmission, flow control, etc.
• Application using OS’s TCP API to do its job.

Protocol Layering

IP IP IP IP

TCP TCP

HTTP HTTP

Ethernet ModemEthernet ATM ATM Modem

Web
Server

Internet
Router

Internet
Router

Web
Client

• Link layers (eg Ethernet) are local to a particular link
• Routers look at IP headers to decide how to route a packet.
• TCP provides reliability via retransmission, flow control, etc.
• Application using OS’s TCP API to do its job.

Fiction!mostly

What actually happens to TCP in the wild?

 We studied 142 access networks in 24 countries.

 Ran tests to measure what actually happened to TCP.

 Are new options actually permitted?

 Does re-segmentation occur in the network?

 Are sequence numbers modified?

 Do middleboxes proactively ack?

Middleboxes and new TCP Options in SYN

 Middleboxes that remove unknown options are not so rare,
especially on port 80

What actually happens to TCP in the wild?

 Rewrote sequence numbers: 10% of paths (18% on port 80)
 Presumably to improve initial sequence number randomization

 Resegmented data: 3% of paths (13% on port 80)
 Proxy Ack: 3% of paths (7% on port 80)

 Note: all of these paths also removed new options from the
SYN

 Ack data not sent: 26% of paths (33% on port 80) do strange
things if you send an ack for data not yet sent.

What actually happens to TCP in the wild?

 Rewrote sequence numbers: 10% of paths (18% on port 80)
 Presumably to improve initial sequence number randomization

 Resegmented data: 3% of paths (13% on port 80)
 Proxy Ack: 3% of paths (7% on port 80)

 Note: all of these paths also removed new options from the
SYN

 Ack data not sent: 26% of paths (33% on port 80) do strange
things if you send an ack for data not yet sent.

Not to mention…

 NAT
 Pretty nearly ubiquitous, but comparatively benign

 DPI-driven rate limiters
 Lawful intercept equipment
 Application optimizers
 Anything at the server end:

 Firewalls
 Reverse proxies
 Load balancers
 Traffic scrubbers
 Normalizers, etc

Our methodology
will not detect most
of these, but we’re
pretty sure they’re
out there too.

IPv6 will save us!

 No.

Part 2:

Tomorrow’s Internet

Option 1: Extrapolate the current Internet

 Plenty of box vendors will sell you a solution.
 Whatever you think your problem is.

 Current apps get optimized and set in silicon.
 Future apps tunnelled over HTTP

 (but what do all those port 80 specialized middleboxes do?)

 Impossible to reason about the concatenation of middleboxes.
 If you think STUN/TURN/ICE is hard to reason about, you’ve

not seen anything yet,

Option 2: Devise a wonderful new Internet
architecture that everyone will love and deploy.

Option 3: Reverse engineer a new Internet
architecture from the current mess.

 Observation: The Internet is becoming a concatenation
of IP networks interconnected by L4+ functionality.

A segmented Internet

access core datacentre

IP processing

L4+
processing

L4+
processing

It already looks somewhat like this, but the L4+ processing is
more distributed.

A platform for Change

 Those L4+ platforms need to be more general that
today’s middleboxes.

 More open.

 More upgradable, as new apps arrive.

 Aggregate functionality, so it’s managable.

 Identifiable, so we can reason about them

 Cheap and scalable.

Flowstream

Flowstream

Flowstream

Flowstream

OpenFlow

Xen

ClickOS

Flowstream

OpenFlow

FreeBSD
+ netmap

Process
(maybe running
Click userspace)

Flowstream

OpenFlow

FreeBSD
+ netmap

Process
(maybe running
Click userspace)

Xen

ClickOSLuigi Rizzo’s netmap:
Saturate 10Gb/s with 64 byte packets in userspace

Empowering the ends, not just the middle

Types of Processing

1. Monitoring/read-only

2. Drop/filter/rate-limit

3. Redirect (eg tunnel)

4. Tee

5. Rewrite

Authorization

 On-path providers can instantiate flow-processing
functionality.

 Can’t stop them anyway.

 Source and destination also share ownership of a flow.

 Can we allow them to set up flow processing?

Authorization

 Source or destination-initiated processing:

 Need some way to pay.

 Need to avoid hijacking.

Authorization

 Request from destination is simple(ish) to authenticate.
 Simple nonce exchange proves requester is downstream. May

be sufficient for monitoring, etc.
 Otherwise need to prove address ownership (eg via RPKI)

 Request from source is harder. Anyone upstream can NAT traffic
to claim ownership.
 Address proof (even using RPKI) only proves requester is on

path upstream.

Becoming on-path

access datacentre

DDoS attack

Can filter here

Prefer to filter
here

Becoming on-path

access datacentre

DDoS attack

BGP route
for dst

BGP route
for dst

Becoming on-path

access datacentre

BGP route
for dst

BGP route
for dst

Destination ISP has dynamically extended the
reach of its network

Change Project

 Flow processing as a first class primitive

 Scalable extensible software platform to enable it.

 Mechanisms to remotely authorize instantiation of
processing.

 Protocols to communicate with flow processing
platforms, so we can reason about the network.

http://www.change-project.eu/

Going with the flow…

 Currently flow processing in middleboxes serves to
inhibit new applications.
 Optimization of the present
 Inextensible inflexible network security

 Key question: is it possible to re-claim the middlebox
as a force for enabling end-to-end innovation?

