
University
of

St Andrews

Incentives for Opportunistic
Networks

Greg Bigwood gjb4@st-andrews.ac.uk
Tristan Henderson tnhh@st-andrews.ac.uk

mailto:gjb4@st-andrews.ac.uk
mailto:gjb4@st-andrews.ac.uk
mailto:tnhh@st-andrews.ac.uk
mailto:tnhh@st-andrews.ac.uk

• Users carry wireless mobile devices
• Network leveraged from human

encounters
• Episodic connectivity
• High delay

• Traditional TCP/IP does not cope
• Store-and-forward architecture

• use Bluetooth/ WiFi to exchange messages

• Constrained power

Computer Science
St Andrews

Greg Bigwood

Opportunistic Networks

2

Computer Science
St Andrews

Greg Bigwood

An Opportunistic Messaging Scenario

• Let’s say James wants to message his friend Jon using
the opportunistic network

3

?

Computer Science
St Andrews

Greg Bigwood

He needs someone to forward his msg

• He meets Hämed, and gives him the message

4

Computer Science
St Andrews

Greg Bigwood

Hämed is a clever guy...

• He worries about the battery cost of forwarding

5

https://www.facebook.com/haddadi?and=narseo
https://www.facebook.com/haddadi?and=narseo

Computer Science
St Andrews

Greg Bigwood

He drops the message

• A rational, but selfish act

6

https://www.facebook.com/haddadi?and=narseo
https://www.facebook.com/haddadi?and=narseo

Computer Science
St Andrews

Greg Bigwood

When he later gets to the pub...

• Hämed doesnt pass on the message

7

Computer Science
St Andrews

Greg Bigwood

Later James meets Jon

• James asks Jon if Hämed gave him the message

8

?

Computer Science
St Andrews

Greg Bigwood

Jon now knows Hämed is selfish

• Every time he encounters someone he can tell them
that Hämed is selfish

9

Computer Science
St Andrews

Greg Bigwood

When people know Hämed is selfish

• They wont forward his messages for him

10

Computer Science
St Andrews

Greg Bigwood

Hämed is incentivised to be nice

• He must forward messages for other nodes

11

Computer Science
St Andrews

Greg Bigwood

How can we incentivise participation?

• Encounter histories allow us to detect selfishness
• We can build a concept of reputation
• We can then punish selfish nodes:

• Drop selfish nodes’ messages
• Encouraging selfish nodes to send messages created by other nodes

• But who can we trust in an opportunistic network?
• Rational behaviour would be for everyone to be selfish
• Therefore: trust no-one?
• But if nobody trusts anyone, nobody can forward!

12

• Self-Reported Social Network (SRSN): declared
social contacts

• For example participants’ Facebook “friends” to give
declared social network

Computer Science
St Andrews

Greg Bigwood

Trust your “friends”

13

Computer Science
St Andrews

Greg Bigwood

IRONMAN

• Incentives and Reputation for Opportunistic Networks
using sociAl Networks

• Store history of encounters and message forwards
• Detect selfishness

• Decrease nodes rating for each msg dropped (additive decrease)
• Increase nodes rating for each non-selfish forward (additive increase)

• Trust is based on local and global opinions
• Nodes are initially untrusted, unless in SRSN
• Opinions exchanged during encounters

14

Computer Science
St Andrews

Greg Bigwood

Evaluation

• Compare against existing incentive mechanisms:
• YSS [Yu, Singh and Sycara 2004]
• YSS + SRSN
• RELICS+S [Uddin, Godfrey and Abdelzaher 2010]

• Use trace driven simulation of message passing using
Epidemic routing:
• SASSY dataset (facebook and ZigBee encounters)
• Reality Mining (phone logs and Bluetooth encounters)
• HOPE (talk interest and RFID encounters)
• (all on CRAWDAD crawdad.org)

15

Percentage of selfish nodes

Se
lfis

hn
es

s
Co

st
 (%

)
0

20
40

60
80

10
0

50 100

None
RELICS+S
YSS
YSS + SRSN
IRONMAN

Computer Science
St Andrews

Greg Bigwood

IRONMAN: deters selfish behaviour

16

Percentage of selfish nodes

De
liv

er
y

Ra
tio

 (%
)

0
10

20
30

40

0 50 100

None
RELICS+S
YSS
YSS + SRSN
IRONMAN

Computer Science
St Andrews

Greg Bigwood

IRONMAN: as good as no selfishness

17

Computer Science
St Andrews

Greg Bigwood

Conclusions

• IRONMAN does not require an oracle or infrastructure
network, nor delivery receipts

• Outperforms existing mechanisms, approaching
performance when no selfishness in the network

• Could social-network information be used to improve
incentive mechanisms for p2p or ad hoc networks?

• Could social network applications benefit from the
reputation layer information?

• Improve selfishness model:
• Selfish nodes can hide out inside detection time

18

Computer Science
St Andrews

Greg Bigwood19

Problem

• People are rational
• People are worried about the

cost of opportunistic
networks

• People are selfish
• People are not going to

follow your opportunistic
routing protocol

• People are going to drop your
messages while expecting
you to forward theirs

Computer Science
St Andrews

Greg Bigwood

Detection

21

!"#$%

!"#$%

&'%

!"#$%

!"#$%

()*

&'%

()*

()*

()*

+,,-%.

/#01&'%12#'%
13)415315627

89%10#01:).;

<621=)>1()*

!"#$%1?@:.61.)16%:01()*1@1
5%66@2%146#:21.9%1
),,)>.4:#6.#$1:%.?)>A

BC1!"#$%12#'%61.9%15%66@2%1
.)1&'%

DC1&'%15%%.61()*1*4.1
0)%61:)0%12#'%19#51.9%1
5%66@2%

EC1!"#$%1@6A61()*1#=1&'%1
2@'%19#51.9%15%66@2%

FC1()*1A:)?61&'%1#61
6%"G69

Fig. 2. Nodes keep history of their encounters and message exchanges. When
nodes meet these histories are exchanged to detect selfishness.

A. Detecting selfishness
We now present our IRONMAN mechanism. Consider the

following scenario (Figure 2): Alice wishes to send a package
to Bob. She first meets Eve, however, and gives Eve the
package, believing Eve will meet Bob before Alice does. Eve
then meets Bob, and because Eve is selfish, does not give
Bob the package. Yet later, Alice meets Bob, and they discuss
their encounters. Alice mentions to Bob that she gave Eve a
package for Bob. Bob knows he met Eve, and therefore knows
Eve was being selfish by withholding the package. We extend
this analogy to opportunistic networks.

If nodes can store a history of encounter times and messages
exchanged, and exchange histories during encounters, we can
detect selfishness and altruism as seen in Algorithm 1. If a
node detects another as selfish, the detecting node decrements
its rating for the selfish node by the behaviour constant x.
Similarly, when nodes pass on a message for which they are
not the source: the receiver marks them as altruistic, and their
rating of the node receiving the message is incremented by x.
Additive increase and decrease are used to reduce the effect of
false positives, which can arise when a node pushes a message
out of its buffers due to congestion (giving the appearance that
it deliberately dropped the message).

Nodes store local ratings of encountered nodes, and ex-
change these during encounters. An encountered node’s trust
score is the sum of the local rating and foreign ratings. Upon
receiving a message the node checks if the source of the
message is the node forwarding. If so, and if the trust score
is not greater than the trust threshold, then the receiving node
will discard the message and notify the forwarding node that
it has been detected as selfish.

Nodes do not accept messages for which they believe the
source of the message to be selfish. To allow nodes that
have been deemed as selfish to improve their trust score,
nodes do pass messages to selfish nodes, allowing them to

Algorithm 1 IRONMAN Selfishness detection
1: x←behaviour constant

function EncounterNode(B):
1: history tuples ← [(exchange time, msg id, msg source,

node seen)]
2: exchange forwarding history with B
3: for all message exchanges in foreign history do
4: if exchange time > last encounter with B then
5: if msg destination == my id then
6: if last encounter with node seen > last encounter with B

then
7: if node seen did not give us msg id then
8: Ratingnode seen ←Ratingnode seen− x

function ReceiveMessage(other node, msg src):
1: if other node �= msg src then
2: Ratingother node ←Ratingother node + x

forward these messages and therefore improve their ratings.
This approach does not punish nodes that are rarely given
messages to forward, it only punishes those that could have
given a message to a destination but did not. To prove that
encounters took place we assume the presence of encounter
tickets [11]. Nodes use this cryptographic mechanism to prove
they exchanged messages, by getting a signed receipt of
message exchange.

Nodes do not need to have synchronised clocks, provided
they can agree on the difference in their opinion of the time
when they have an encounter. When nodes encounter one
another they exchange the time they believe the encounter
is taking place at; nodes can thus determine the time when
the encounters in the foreign history took place relative to
their own opinion of the correct time. Nodes can then use this
information despite potential differences in the perceived time
on the nodes. <I am not convinced by this. Would a selfish
node cheat?>

IV. EVALUATION

We test IRONMAN’s performance using trace-driven sim-
ulation of a simple message-passing application. As the per-
formance of an opportunistic network may vary depending on
the connectivity patterns of the nodes, we use three real-world
traces in our analysis:

1) Our “SASSY” connectivity trace, available on the
CRAWDAD data archive [15]. 24 individuals carried T-
mote sensor nodes for 3 months [16]. We use the motes’
ZigBee radios to detect co-location and collected the
participants’ Facebook “friends” as SRSNs.

2) The MIT Reality Mining (RM) trace [3]. 99 individuals
carried mobile phones using Bluetooth to detect co-
location. We use users’ phone contact lists as SRSNs.

3) The HOPE dataset [17] of the movements of RFID tags
carried by 767 attendees at the Hackers On Planet Earth
conference. Participants registered their interest in topics
and specific sessions before attending the conference,
which we use as the SRSN, and take encounters from
the RFID readings. As the dataset is dense, and as most

Computer Science
St Andrews

Greg Bigwood

Detection

22

!"#$%

!"#$%

&'%

!"#$%

!"#$%

()*

&'%

()*

()*

()*

+,,-%.

/#01&'%12#'%
13)415315627

89%10#01:).;

<621=)>1()*

!"#$%1?@:.61.)16%:01()*1@1
5%66@2%146#:21.9%1
),,)>.4:#6.#$1:%.?)>A

BC1!"#$%12#'%61.9%15%66@2%1
.)1&'%

DC1&'%15%%.61()*1*4.1
0)%61:)0%12#'%19#51.9%1
5%66@2%

EC1!"#$%1@6A61()*1#=1&'%1
2@'%19#51.9%15%66@2%

FC1()*1A:)?61&'%1#61
6%"G69

Fig. 2. Nodes keep history of their encounters and message exchanges. When
nodes meet these histories are exchanged to detect selfishness.

A. Detecting selfishness
We now present our IRONMAN mechanism. Consider the

following scenario (Figure 2): Alice wishes to send a package
to Bob. She first meets Eve, however, and gives Eve the
package, believing Eve will meet Bob before Alice does. Eve
then meets Bob, and because Eve is selfish, does not give
Bob the package. Yet later, Alice meets Bob, and they discuss
their encounters. Alice mentions to Bob that she gave Eve a
package for Bob. Bob knows he met Eve, and therefore knows
Eve was being selfish by withholding the package. We extend
this analogy to opportunistic networks.

If nodes can store a history of encounter times and messages
exchanged, and exchange histories during encounters, we can
detect selfishness and altruism as seen in Algorithm 1. If a
node detects another as selfish, the detecting node decrements
its rating for the selfish node by the behaviour constant x.
Similarly, when nodes pass on a message for which they are
not the source: the receiver marks them as altruistic, and their
rating of the node receiving the message is incremented by x.
Additive increase and decrease are used to reduce the effect of
false positives, which can arise when a node pushes a message
out of its buffers due to congestion (giving the appearance that
it deliberately dropped the message).

Nodes store local ratings of encountered nodes, and ex-
change these during encounters. An encountered node’s trust
score is the sum of the local rating and foreign ratings. Upon
receiving a message the node checks if the source of the
message is the node forwarding. If so, and if the trust score
is not greater than the trust threshold, then the receiving node
will discard the message and notify the forwarding node that
it has been detected as selfish.

Nodes do not accept messages for which they believe the
source of the message to be selfish. To allow nodes that
have been deemed as selfish to improve their trust score,
nodes do pass messages to selfish nodes, allowing them to

Algorithm 1 IRONMAN Selfishness detection
1: x←behaviour constant

function EncounterNode(B):
1: history tuples ← [(exchange time, msg id, msg source,

node seen)]
2: exchange forwarding history with B
3: for all message exchanges in foreign history do
4: if exchange time > last encounter with B then
5: if msg destination == my id then
6: if last encounter with node seen > last encounter with B

then
7: if node seen did not give us msg id then
8: Ratingnode seen ←Ratingnode seen− x

function ReceiveMessage(other node, msg src):
1: if other node �= msg src then
2: Ratingother node ←Ratingother node + x

forward these messages and therefore improve their ratings.
This approach does not punish nodes that are rarely given
messages to forward, it only punishes those that could have
given a message to a destination but did not. To prove that
encounters took place we assume the presence of encounter
tickets [11]. Nodes use this cryptographic mechanism to prove
they exchanged messages, by getting a signed receipt of
message exchange.

Nodes do not need to have synchronised clocks, provided
they can agree on the difference in their opinion of the time
when they have an encounter. When nodes encounter one
another they exchange the time they believe the encounter
is taking place at; nodes can thus determine the time when
the encounters in the foreign history took place relative to
their own opinion of the correct time. Nodes can then use this
information despite potential differences in the perceived time
on the nodes. <I am not convinced by this. Would a selfish
node cheat?>

IV. EVALUATION

We test IRONMAN’s performance using trace-driven sim-
ulation of a simple message-passing application. As the per-
formance of an opportunistic network may vary depending on
the connectivity patterns of the nodes, we use three real-world
traces in our analysis:

1) Our “SASSY” connectivity trace, available on the
CRAWDAD data archive [15]. 24 individuals carried T-
mote sensor nodes for 3 months [16]. We use the motes’
ZigBee radios to detect co-location and collected the
participants’ Facebook “friends” as SRSNs.

2) The MIT Reality Mining (RM) trace [3]. 99 individuals
carried mobile phones using Bluetooth to detect co-
location. We use users’ phone contact lists as SRSNs.

3) The HOPE dataset [17] of the movements of RFID tags
carried by 767 attendees at the Hackers On Planet Earth
conference. Participants registered their interest in topics
and specific sessions before attending the conference,
which we use as the SRSN, and take encounters from
the RFID readings. As the dataset is dense, and as most

