Incentives for Opportunistic Networks

Greg Bigwood gjb4@st-andrews.ac.uk Tristan Henderson tnhh@st-andrews.ac.uk

Opportunistic Networks

- Users carry wireless mobile devices
- Network leveraged from human encounters
 - Episodic connectivity
 - High delay
- Traditional TCP/IP does not cope
- Store-and-forward architecture
 - use Bluetooth/ WiFi to exchange messages
- Constrained power

An Opportunistic Messaging Scenario

 Let's say James wants to message his friend Jon using the opportunistic network

He needs someone to forward his msg

• He meets Hämed, and gives him the message

Hämed is a clever guy...

• He worries about the battery cost of forwarding

He drops the message

• A rational, but selfish act

When he later gets to the pub...

• Hämed doesnt pass on the message

Later James meets Jon

• James asks Jon if Hämed gave him the message

?

Jon now knows Hämed is selfish

 Every time he encounters someone he can tell them that Hämed is selfish

When people know Hämed is selfish

• They wont forward his messages for him

Hämed is incentivised to be nice

• He must forward messages for other nodes

11

How can we incentivise participation?

- Encounter histories allow us to detect selfishness
- We can build a concept of reputation
- We can then punish selfish nodes:
 - Drop selfish nodes' messages
 - Encouraging selfish nodes to send messages created by other nodes
- But who can we trust in an opportunistic network?
- Rational behaviour would be for everyone to be selfish
- Therefore: trust no-one?
- But if nobody trusts anyone, nobody can forward!

Trust your "friends"

- Self-Reported Social Network (SRSN): declared social contacts
- For example participants' Facebook "friends" to give declared social network

IRONMAN

Computer Science

t Andrews

- Incentives and Reputation for Opportunistic Networks using sociAl Networks
- Store history of encounters and message forwards
- Detect selfishness
 - Decrease nodes rating for each msg dropped (additive decrease)
 - Increase nodes rating for each non-selfish forward (additive increase)
- Trust is based on local and global opinions
 - Nodes are initially untrusted, unless in SRSN
 - Opinions exchanged during encounters

Greg Bigwood

Evaluation

- Compare against existing incentive mechanisms:
 - YSS [Yu, Singh and Sycara 2004]
 - YSS + SRSN
 - RELICS+S [Uddin, Godfrey and Abdelzaher 2010]
- Use trace driven simulation of message passing using Epidemic routing:
 - SASSY dataset (facebook and ZigBee encounters)
 - Reality Mining (phone logs and Bluetooth encounters)
 - HOPE (talk interest and RFID encounters)
 - (all on CRAWDAD crawdad.org)

IRONMAN: deters selfish behaviour

Percentage of selfish nodes

St Andrews

Greg Bigwood

IRONMAN: as good as no selfishness

Greg Bigwood

Conclusions

- IRONMAN does not require an oracle or infrastructure network, nor delivery receipts
- Outperforms existing mechanisms, approaching performance when no selfishness in the network
- Could social-network information be used to improve incentive mechanisms for p2p or ad hoc networks?
- Could social network applications benefit from the reputation layer information?
- Improve selfishness model:
 - Selfish nodes can hide out inside detection time

Problem

- People are rational
- People are worried about the cost of opportunistic networks
- People are selfish
- People are not going to follow your opportunistic routing protocol
- People are going to drop your messages while expecting you to forward theirs

Detection

Algorithm 1 IRONMAN Selfishness detection

- 1: $x \leftarrow behaviour \ constant$
- function EncounterNode(*B*):
 - 1: history_tuples \leftarrow [(exchange_time, msg_id, msg_source, node_seen)]
 - 2: exchange forwarding history with B
 - 3: for all message_exchanges in foreign_history do
 - 4: **if** *exchange_time* > last encounter with *B* **then**
 - 5: **if** $msg_destination == my_id$ **then**
 - 6: **if** last encounter with *node_seen* > last encounter with *B* **then**
 - 7: **if** *node_seen* did not give us *msg_id* **then**
 - 8: Rating_{node_seen} \leftarrow Rating_{node_seen} -x

function ReceiveMessage(other_node, msg_src):

- 1: if other_node \neq msg_src then
- 2: Rating_{other_node} \leftarrow Rating_{other_node} + x

Detection

Computer Science St Andrews