
Protocol stacks and
multicore scalability

The evolving hardware-software interface
or

Why we love and hate offload

MSN 2010
Robert N. M. Watson

University of Cambridge

Portions of this work supported
by Juniper Networks, Inc.

2

Network
stack

goodness

N
IC

N
IC

The somebody
else's problem

cloud

Network
stack

goodness

magic

Idealised network for
an OS developer

Things are getting a bit
sticky at the end host*

3

* … and end host-like middle nodes: proxies,
 application firewalls, anti-spam, anti-virus, …

Packets-per-second (PPS) scales with
bandwidth, but per-core limits reached

➮ Transition to multicore

Even today’s bandwidth achieved only with
protocol offload to the NIC

➮ But just specific protocols, workloads

4

Contemporary
network stack

scalability themes

5

6

• Counting instructions ➞ cache misses

• Lock contention ➞ cache line contention

• Locking ➞ finding parallelism opportunities

• Work ordering, classification, distribution

• NIC offload of even more protocol layers

• Vertical integrated work distribution/affinity

Why we love offload

Better performance,
no protocol changes*

7

* It sounds good so it must be true!

Full TCP, iSCSI, RDMA, ... offload

MultiQ: RSS, CAMs, MIPS, …

IP fragmentation/TSO/LRO

Checksum offload, VLAN en/decap

Interrupt moderation

PIO ➞ DMA rings

8

100Mb/s

10Gb/s

1Gb/s

Reducing effective PPS
with offload

9

TCP Segmentation
Offload (TSO)

10

Userspace Kernel Hardware

user thread
ithread

Data stream
from

application

TCP header
encapsulation

IP header
encapsulation

Kernel copies
in data to
mbufs +
clusters

Application Socket TCP IP
Link layer +

driver

Checksum
+ transmit

Ethernet frame
encapsulation,

insert in
descriptor ring

Device

2k, 4k,
9k, 16k

MSS MSS

TCP segmentation

Move TCP segmentation from
TCP layer to hardware

Reduce effective PPS to improve OS performance

Large Receive Offload
(LRO)*

11

Hardware Kernel

ithread user thread

Userspace

Linker layer + driver
IP TCP + Socket Socket

Strip IP
header

Interpret and
strips link

layer header

Kernel copies
out mbufs +

clusters

Receive, validate
ethernet, IP, TCP

checksums

Reassemble
segments

Application

Data stream
to

application

Look up
and deliver
to socket

Strip TCP
header

Move TCP segment reassembly
from network protocol to device driver

Device

* Interestingly, LRO is often done in software

12

Varying TSO and LRO − bandwidth

Net bandwidth in Gb/s

Pr
oc

es
se

s

1
2
3
4
5
6
7
8

2 4 6

●

●

●

●

●

●

●

●

● ●

●

●●

1 − LRO+TSO
1
2
3
4
5
6
7
8

●

●

●

●

●

●

●

●

● ●

●

●

2 − LRO
1
2
3
4
5
6
7
8

●

●

●

●

●

●

●

●

●

3 − vanilla

T
SO

 a
nd

 L
RO

 o
ff

fr
om

 n
ow

 o
n

13

What about the
wire protocol?

• Packet format remains the same

• Transmit/receive code essentially identical

• Just shifted segmentation/reassembly

• Effective ACK behaviour has changed!

• ACK every 6-8 segments instead of every
2 segments!

Managing contention
and

the search for
parallelism*

14

* Again, try not to change the protocol…

Lock contention

15

!"

#"

$"

%"

&"

'"

("

)"

*"

+"

#!"

#",-./011" $",-./01101" %",-./01101" &",-./01101"

2.31."

31."

!"#

$!"#

%!"#

&!"#

'!"#

(!"#

)!"#

*!"#

+!"#

,!"#

$!!"#

-.
/0
.1
$2
3.
45
00
#

/0
.1
$2
3.
45
00
#

-.
/0
.1
%2
3.
45
00
50
#

/0
.1
%2
3.
45
00
50
#

-.
/0
.1
&2
3.
45
00
50
#

/0
.1
&2
3.
45
00
50
#

-.
/0
.1
'2
3.
45
00
50
#

/0
.1
'2
3.
45
00
50
#

"6785#

"6-/3#

"090#

16

Varying locking strategy − bandwidth

Net bandwidth in Gb/s

Pr
oc

es
se

s

1
2
3
4
5
6
7
8

1 2 3 4

●

●

●

●

●

●

●

●

●

1 − multi queue read locking
1
2
3
4
5
6
7
8

●

●

●

●

●

●

●

●

●●

2 − multi queue exclusive locking
1
2
3
4
5
6
7
8

●

●

●

●

●

●

●

●

●

●

3 − single queue read locking
1
2
3
4
5
6
7
8

●

●

●

●

●

●

●

●

4 − single queue exclusive locking

TCP input path

17

Hardware UserspaceKernel

ithread netisr software ithread user thread

Device Application
Linker layer

+ driver
IP TCP + Socket Socket

Data stream
to

application

Validate
checksum,

strip IP
header

Validate
checksum, strip

TCP header

Reassemble
segments,
deliver to

socket

Interpret and
strips link

layer header

Kernel copies
out mbufs +

clusters

Receive,
validate

checksum

Look up
socket

Potential dispatch points

18

Work distribution

• Parallelism implies work distribution

• Must keep work ordered

• Establish flow-CPU affinity

• Microsoft Receive-Side Steering (RSS)

• More fine-grained solutions (CAMs, etc)

⚠ MTCP watch out! ⚠ The Toeplitz catastrophe

19

Varying dispatch strategy − bandwidth

Net bandwidth in Gb/s

Pr
oc

es
se

s

1
2
3
4
5
6
7
8

1 2 3 4

●

●

●

●

●

●

●

●

1 − multi
1
2
3
4
5
6
7
8

●

●

●

●

●

●

●

●

●

2 − single_link_proto
1
2
3
4
5
6
7
8

●

●

●

●

●

●

●

●

●

3 − single

Why we hate offload

20

“Layering violations”
are not invisible

• Hardware bugs harder to work around

• Instrumentation below socket layer affected

• BPF, firewalls, traffic management, etc.

• Interface migration more difficult

• All your protocols were not created equal

• Not all TOEs equal: SYN, TIMEWAIT, etc.

21

Protocol implications

• Unsupported protocols and workloads see:

• Internet-wide PMTU applied to PCI

• Limited or no checksum offload

• Ineffectual NIC-side load balancing

• Another nail in “deploy a new protocol”
coffin? (e.g., SCTP, even multi-path TCP)

• Ideas about improving protocol design?

22

Structural problems

• Replicated implementation and
maintenance responsibility

• Difficult field upgrade

• Host vs. NIC interop problems

• Composability problem for virtualisation

• Encodes flow affinity policies in hardware

23

The vertical
affinity problem

24

25

Network stack goodness

NIC

Application

Ithread 0 Ithread Ithread 2 Ithread 3 Ithread 4 Ithread 5 Ithread 6 Ithread 7

Queue 0 Queue Queue 2 Queue 3 Queue 4 Queue 5 Queue 6 Queue 7

Thread 0 Thread 1 Thread 2 Thread 3 Thread 4 Thread 5 Thread 6 Thread 7

Socket 0 Socket 1 Socket 2 Socket 3 Socket 4 Socket 5 Socket 6 Socket 7

Core 0 Core 1 Core 2 Core 3 Core 4 Core 5 Core 6 Core 7

Core 0 Core 1 Core 2 Core 3 Core 4 Core 5 Core 6 Core 7

Hardware-only RSS

Awkwardly
random

distribution

26

Network stack goodness

NIC

Application

Ithread 0 Ithread Ithread 2 Ithread 3 Ithread 4 Ithread 5 Ithread 6 Ithread 7

Queue 0 Queue Queue 2 Queue 3 Queue 4 Queue 5 Queue 6 Queue 7

Thread 0 Thread 1 Thread 2 Thread 3 Thread 4 Thread 5 Thread 6 Thread 7

Socket 0 Socket 1 Socket 2 Socket 3 Socket 4 Socket 5 Socket 6 Socket 7

Core 0 Core 1 Core 2 Core 3 Core 4 Core 5 Core 6 Core 7

Core 0 Core 1 Core 2 Core 3 Core 4 Core 5 Core 6 Core 7

OS-aligned RSS

Is this
better?

27

• Applications can express execution affinity

• How to align with network stack and
network interface affinity?

• Sockets API inadequate; easy to imagine
simple extensions but are they sufficient?

• How to deal with hardware vs. software
policy mismatches?

28

N
et

w
or

k
st

ac
k

go
od

ne
ss

N
IC

N
IC

N
etw

ork
stack

goodness

Ap
pl

ic
at

io
n ApplicationSw

itc
he

s
/

R
ou

te
rs
Sw

itches /
R

outers
The

somebody
else's problem

cloud

Quite a lot
less magic

Reality for an
OS developer

Key research areas

• Explore programmability, debuggability, and
traceability of heterogenous network stack

• Security implications of intelligent devices,
diverse/new execution substrates, and
single intermediate format

• Protocol impact: “end-to-end” endpoints
shifting even further

29

Q&A

30

