Strategies for Network Resilience: Capitalising on Policies

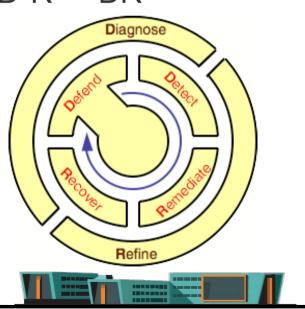
Paul Smith, Alberto Schaeffer-Filho, Azman Ali, Andreas Mauthe and David Hutchison Lancaster University

Marcus Schoeller NEC Laboratories Europe, Heidelberg, Germany

> Nizar Kheir France Telecom R&D Caen

Presented at the: 4th International Conference on Autonomous Infrastructure, Management and Security (AIMS 2010)

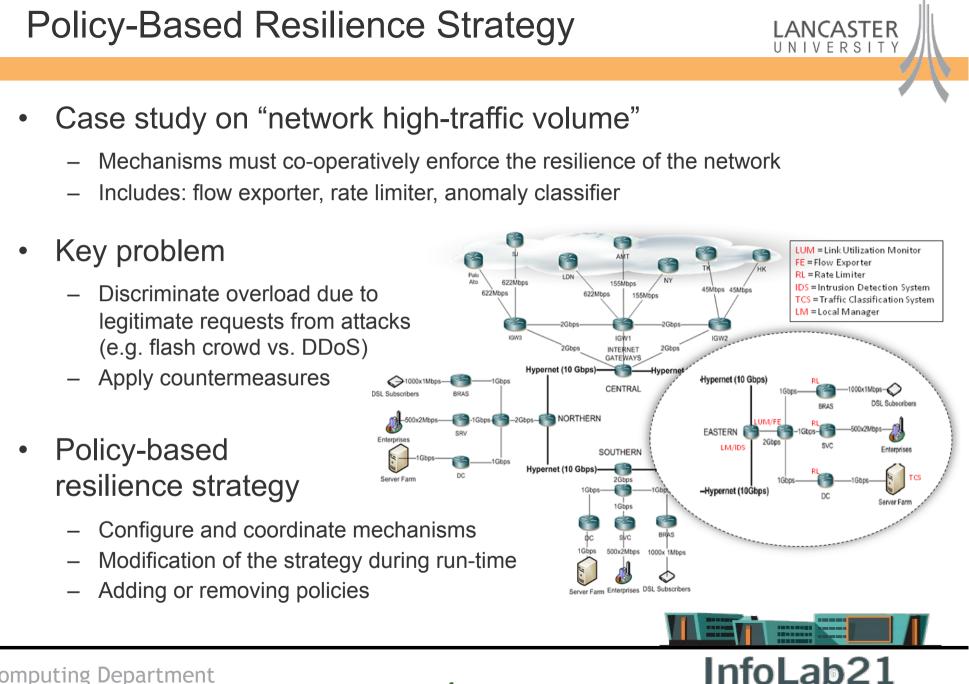
> Multi-Service Networks, Cosener's House, July 8th 2010

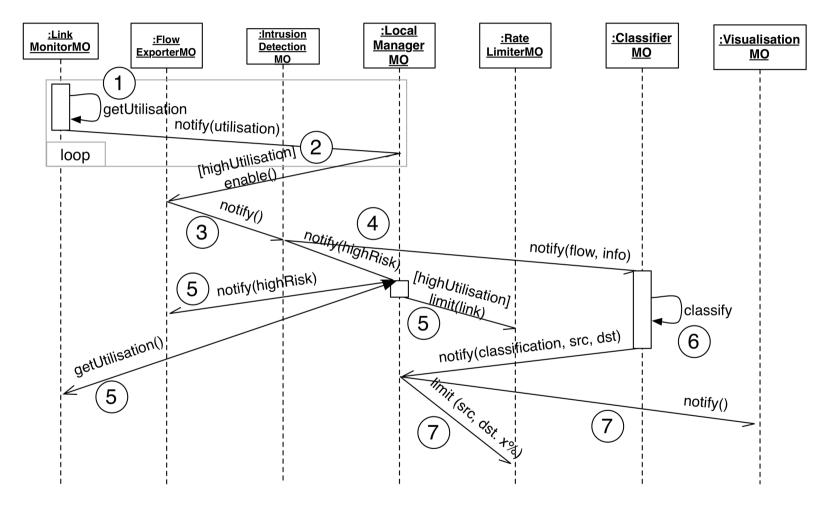


Computing Department

Background

- To embed resilience into the future Internet
 - Conceptual framework
 - Mechanisms and algorithms
 - Network resilience
 - Service resilience
 - Experimentation in testbeds
- Network security and resilience framework: D²R² + DR
 - Real-time control-loop (D²R²)
 - **Defend** against challenges to normal operation
 - **Detect** when adverse event occurs
 - Remediated the effects of adverse event
 - **Recover** to original normal operation
 - Offline control-loop (DR)
 - Diagnose what caused the challenge
 - **Refine** operation to prevent it from happening again


Motivation


- Configuration criteria change over time
 - Requirements (e.g. SLAs)
 - Operation context (e.g. battery power, node churn)
 - Challenges (e.g. component faults, new types of attacks)
- Resilience strategy must be de-coupled from the mechanisms
 that implement it
- Difficulties in defining resilience configurations
 - Deriving configurations from high-level requirements
 - Identifying and resolving conflicting configurations
 - Learning resilience behaviour
- How policies can assist the specification of strategies for network resilience

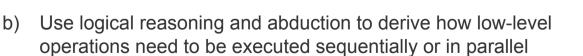
Policy-Based Resilience Strategy

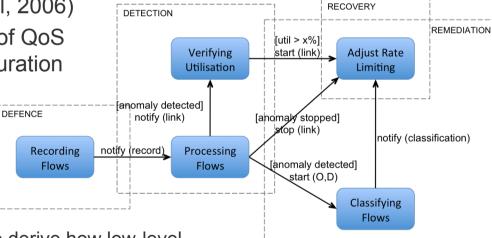
LANCASTER UNIVERSITY

Computing Department

Complexities in Defining Configurations

- Policy frameworks can assist in defining resilience strategies for multi-service networks
 - **①** Deriving configurations from high-level requirements
 - ② Identifying and resolving conflicting configurations
 - ③ Learning resilience behaviour





Complexities in Defining Configurations (1st) LANCASTER

Deriving configurations from high-level requirements

- Policies realise a high-level requirement to ensure resilience
 - E.g. in terms of the availability of a server farm and the services it provides
 - Complex scenarios would make deriving concrete policies by hand intractable
 - Derive implementable policy configurations from high-level specifications
- Policy refinement (Bandara et al, 2006)
 - Goal elaboration & refinement of QoS requirements into policy configuration
 - a) Transform high-level goals into more concrete ones, until they can be expressed as implementable operations

Computing Department

b) Horizontally, along the D^2R^2 strategy:

as replicating service during flash

detection mechanisms at the server farm may (wrongly) determine that node has ceased to behave maliciously, and initiate a recovery configuration

8

on classification (f1, value, conf) {

if ((value == 'DDoS') and (conf <= 0.8)) {

RateLimiterMO limit (fl.src, fl. dest, 80%);

in concurrent challenges - e.g. flash

Conflicting configurations ullet

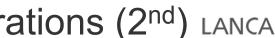
crowd (service)

a) Vertically, *across levels*:

on highServiceUtilisation (service) { } ob VMReplicatorMO replicateService (service)

Complexities in Defining Configurations (2nd) LANCASTER

Identifying and resolving conflicting configurations


- Complex multi-service networks where conflicts can occur •
 - Requirements of a set of services being met at the expense of another set
 - No requirements being met for any service

on classification (f1, value, conf) {

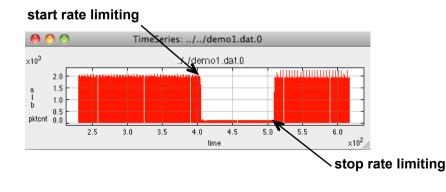
if ((value == 'normal') and (conf > 0.8)) {

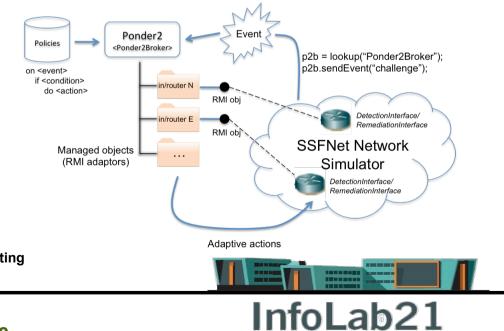
RateLimiterMO limit (fl.src, fl. dest, 0%);

Horizontal

Conflict

Complexities in Defining Configurations (3rd) LANCASTER


Learning resilience behaviour


- Resilience configurations will need to evolve over time
 - Attacks may change and new agreements may cause high-level priorities to shift
 - Strategy may prove to be sub-optimal or incorrect
- Background loop in the D²R² + DR strategy: Diagnose and Refine
- Policy-based learning (Corapi et al, 2008)
 - Logical rules for knowledge representation and reasoning
 - Policies can be easily translated into a logical program
 - Allow user to understand (and correct) what has been learned
- Rules can be iteratively amended to represent better resilience practices based on how successful previous attempts were
 - E.g. during football final, high link utilisation is better remediated by replication of the server streaming the live match, rather than rate limiting link capacity

Implementation: Policy-based Network Simulator

- Basic idea
 - Combine network simulator and policy framework, and then use policies to adapt the behaviour of the simulation during run-time
 - Implement different network topologies
 - Analyse different threat and anomaly scenarios
 - Implement different detection and remediation strategies
- Current status
 - Evaluation of different toolsets: OMENet++, SSFNet, NS-3
 - Architectural Work
 - Preliminary testbed based on
 - SSFNet and Ponder2

LANCASTER UNIVERSITY

Conclusion

- Network resilience is difficult to ensure
 - Configuration of systems is complex
 - Spans across several levels
 - Subject to a wide range of challenges
- D²R² + DR strategy
 - Conceptual framework
 - Network- and service-level mechanisms
- Policies-based resilience provide flexibility in configuring components that implement this strategy
 - Changes in application requirements
 - Context changes
 - New types of challenge manifestation
- Policy-based approaches to make the problem more tractable

Alberto Schaeffer-Filho asf@comp.lancs.ac.uk

Thank you

Multi-Service Networks, Cosener's House, July 8th 2010

Computing Department

Policy-Based Resilience Strategy

```
on classification(fl,value,conf)
                                                     Policies written in terms of the
  if ((value == "DDoS") and (conf < 0.4))
                                                     interface of managed objects
     do
       VisualisationMO notify(alert(high));
       RateLimiterMO limit(fl.src,fl.dest,x%);
                                                 on lowRisk(link,src,dst)
  if ((value == "DDoS") and (conf \geq 0.4))
                                                    if ((list del(link,src,dst)) isEmpty(link))
                                                       do
     do
                                                         FlowExporterMO notify(lowRisk(link));
       VisualisationMO notify(alert(high));
                                                         RateLimiterMO limit(link, 100%);
       FirewallMO block(fl.src,fl.dest);
                                                         ManagerMO policy, configure recovery
    ManagerMO policy, configure remediation
```

based on root cause

