Supporting Energy-Efficient Uploading Strategies for Continuous Sensing Applications on Mobile Phones

Mirco Musolesi University of St Andrews

Joint with Mattia Piraccini, Kristof Fodor, Antonio Corradi and Andrew T. Campbell

My Research Interests

- Intelligent mobile (sensing) systems
 - Algorithms and mechanisms for social computing and socially-aware mobile systems
- Large-scale network analysis&modelling
 - Temporal graphs and information diffusion models
 - Machine learning techniques applied to mobile and social network analysis

Sensor Networking: State of the Art

Continuous Sensing based on Mobile Phones

People-centric Continuous Sensing

- People at the center of the sensing process:
 - People carry phones (sensing devices with Internet connectivity)
 - People can collect data about themselves and from devices embedded in the environment

CenceMe

 A software for injecting presence information (activity, location, friends currently colocated with the person, etc.) in an automatic way into social networking applications (and more)

[Miluzzo et al. Sensing Meets Social Networks: The Design, Implementation and Evaluation of the CenceMe Application. In Proceedings of SenSys '08. November 2008.]

CenceMe

EmotionSense

- Mobile platform for experimental sociology
- Automatic inference of:
 - Interactions (proximity and speech dynamics)
 - Speaker recognition
 - Emotion recognition

Emotion Detection

- Based on Gaussian Mixture Models
 - Training based on Emotional Prosody and Transcripts library

Broad emotion	Narrow emotions	
Нарру	Elation, Interest, Happy	
Sad	Sadness	
Fear	Panic	
Anger	Disgust, Dominant, Hot anger	
Neutral	Neutral normal, Neutral conversation, Neutral distant,	
	Neutral tete, Boredom, Passive	

Server-based Information Processing

Energy is the Key Issue for Continuous Mobile Sensing

GPRS connectivity is power-hungry

A Possible Solution

Intelligent upload of discrete data for continuous sensing applications

[Mirco Musolesi, Mattia Piraccini, Kristof Fodor, Antonio Corradi and Andrew T. Campbell. Supporting Energy-efficient Uploading Strategies for Continuous Sensing Applications on Mobile Phones. In *Proceedings of the 8th International Conference on Pervasive Computing (Pervasive '10)*. Helsinki, Finland. May 2010.]

Streams of States

In our study:

A set of states S

S = {Running, Walking, Sitting, Standing, ...}

Solution: Intelligent Uploading of Updates

Our Dataset

- Study based on real measurements
 - 20 students and staff members from the CS and Biology Departments at Dartmouth College
 - Collected using the CenceMe app for Nokia N95
- Dataset containing activity and location information (soon available on CRAWDAD)
- Two weeks of data:
 - for evaluating prediction techniques, the first was used for training and the second for testing

Online Strategies: Stream Analysis Techniques

- Strategies assuming continuous availability of network connectivity
- Uploading decision made by analysing the stream of states

Phone activity classifier

Activity Representation Accuracy for Online Strategies

Percentage of Traffic Sent

[with respect to upload]

Offline Strategies: Markov Chain based Prediction

- In online strategies the back-end server is not involved in the process
- When the mobile device is disconnected from the Internet, the back-end can just make the last known state available or publish an unknown state message
- An alternative strategy is to try to forecast the next state during a disconnection

Offline Strategies: Markov Chain based Prediction

- Strategies used in presence of
 - continuous connectivity (voluntary disconnections)
 - but also intermittent (involuntary disconnections)
- Use of a transition matrix to model the sequence of the state changes on the server also during a disconnection from the mobile client
- Distributed decisions made on the phones
 - Back-end server not involved in the decision process

- **10.6** 0.1 0.2 0.1
- 0.2 0.7 0.1 0.0
- 0.0 0.3 0.5 0.2
- **7** 0.1 0.1 0.3 0.5

Used by the server to generate the sequence of the states when no fresh information is available

- **10.6** 0.1 0.2 0.1
- 0.2 0.7 0.1 0.0
- 0.0 0.3 0.5 0.2
- **7** 0.1 0.1 0.3 0.5

Used by the server to generate the sequence of the states when no fresh information is available

10.6 0.1 0.2 0.1

0.2 0.7 0.1 0.0

0.0 0.3 0.5 0.2

20.1 0.1 0.3 0.5

Used by the server to generate the sequence of the states when no fresh information is available

5 0.6 0.1 0.2 0.1

0.2 0.7 0.1 0.0

0.0 0.3 0.5 0.2

2 0.1 0.1 0.3 0.5

Used by the server to generate the sequence of the states when no fresh information is available

10.6 0.1 0.2 0.1

0.2 0.7 0.1 0.0

0.0 0.3 0.5 0.2

7 0.1 0.1 0.3 0.5

Used by the server to generate the sequence of the states when no fresh information is available

Mirco Musolesi

26

Transition Matrix Uploading Mechanism

M _{phone}	M _{server}	M _{server}
Run-time matrix	Server-side matrix	Server-side matrix
0.7 0.2 0.2 0.1 0.2 0.7 0.1 0.0 0.1 0.2 0.5 0.2 0.1 0.1 0.2 0.6	0.6 0.1 0.2 0.1 0.2 0.7 0.1 0.0 0.0 0.3 0.5 0.2 0.1 0.1 0.3 0.5	0.6 0.1 0.2 0.1 0.2 0.7 0.1 0.0 0.0 0.3 0.5 0.2 0.1 0.1 0.3 0.5

- its current estimation
- the current estimation of the server

Transition Matrix Uploading Mechanism

If and only if the *distance L* is greater than a certain threshold *th*, the matrix is sent to the server

Accuracy Vs Traffic Overhead

Questions?

Mirco Musolesi

mirco@cs.st-andrews.ac.uk

http://www.cs.st-andrews.ac.uk/~mirco

Mirco Musolesi

30