

Traffic Decomposition & Characterization

Angelos K. Marnerides

Infolab21,Computing Department Lancaster University Lancaster, UK a.marnerides@comp.lancs.ac.uk

Under guidance and collaboration with

David Hutchison - Lancaster University

Dimitrios P. Pezaros - University of Glasgow

Hyun-chul Kim - Seoul National University

Overview

- Motivation & Research Questions
- Our approach
- Theory Recap : Bispectrum, bicoherence & Hinich Algorithms
- Data & Results
- Towards protocol-specific anomaly detection
- ICMP example
- WVD comparison with Wavelets
- Conclusions & Future Work

Motivation & Research Questions

- Have ever the "dynamic" protocol characteristics of operational traffic been statistically visualized and fully justified?
- Traffic modeling assumptions not thoroughly investigated
 - Linearity?
 - Gaussianity?
 - Stationarity?
- Current statistical techniques involving identification of linearity and gaussianity involve simple descriptors such as 1st and 2nd order moment sequences of a process (i.e. mean, variance, autocorrelation sequence, etc..)
- "Bucket" traffic modeling sets limits to tasks such as anomaly detection.
- Macroscopic vs. microscopic traffic view

Our approach

- Employment of microscopic traffic view
 - -Volume-based analysis on short duration traces
- Traffic Decomposition
 - -Protocol modelling
- Introducing Traffic characterization using Higher Order Spectral Analysis
 - Polyspectra (mainly Bispectrum and Bicoherence)
 - Hinich Algorithms
 - Cohen Class Energy Distributions for anomaly detection.
 - Instant frequency and group delay for stationarity.

Bispectrum, Bicoherence & Hinich algorithms

 Bispectrum * defined as the FT of the 3rd order cumulant sequence for a real process X(k)

$$C(\omega_{1}, \omega_{2}) = \sum_{\tau_{1} = -\infty}^{+\infty} \sum_{\tau_{2} = -\infty}^{+\infty} C_{3}(\tau_{1}, \tau_{2}) \exp\left\{-j(\omega_{1}\tau_{1} + \omega_{2}\tau_{2})\right\}$$

- Bicoherence * : squared normalized version of the bispectrum
- Hinich algorithms (Linearity/ Gaussianity test)
 - -IF 3rd order cumulant =0 => bispectrum and bicoherence =0
 - -IF bispectrum != 0 => non-Gaussian process
 - -IF process linear and non-Gaussian => bicoherence !=0 and constant

^{*} interested people on proofs and definitions please refer to: Mendel JM. "Tutorial on higher-order statistics (spectra) in signal processing and system theory: theoretical results and some applications." *Proceedings of the IEEE*, 79, 3, 278-305 *

Hinich Algorithms (cont..)

Step 1: Hypothesis testing for non-zero bispectrum

H1: bispectrum $y(n) \neq 0$

H2: bispectrum y(n) = 0

IF H1==TRUE we can test for linearity

Step 2: Hypothesis for bicoherence

H1`: bicoherence $b(n) \neq const$

H0`: bicoherence b(n) = const

IF H0`==TRUE process is linear

Data & Results

- Hour-long full pcap trace from a Gb Ethernet Link at KEIO University,
 JP
 - divided in 30-min bins (KEIO1,KEIO2)
 - extracted # of bytes and pkts for each unidirectional flow for TCP,UDP, ICMP
- Hour-long full pcap trace from a US-JP link (WIDE) 100 Mbps
 FastEthernet link (SamplePoint B MAWI Working group)
 - divided in 4, 15-min bins (USJP1,USJP2,USJP3,USJP4)
 - extracted # bytes and pkts for each unidirectional flow for TCP,UDP,ICMP

Data & Results (cont..)

KEIO1 (duration	30 mins)

	TCP	UDP	ICMP
Bytes	Linear & NG	Non-Linear & NG	Non-Linear & NG
Packets	Linear & NG	Non-Linear & NG	Non-Linear & NG
KEIO2 (duration 30 mins)			

KEIO2 (duration 30 mins)

	TCP	UDP	ICMP
Bytes	Non-Linear & NG	Non-Linear & NG	Linear & NG
Packets	Linear & NG	Non-Linear & NG	Linear & NG

US-JAPAN Link – Trace 1 (duration 15 mins)

	TCP	UDP	ICMP
Bytes	Linear & NG	Linear & NG	Linear & NG
Packets	Linear & NG	Linear & NG	Non-Linear & NG

US-JAPAN Link - Trace 2 (duration 15mins)

	TCP	UDP	ICMP
Bytes	Linear & NG	Non-Linear & NG	Linear & NG
Packets	Linear & NG	Linear & NG	Non-Linear & NG

US-JAPAN Link - Trace 3 (duration 15mins)

	TCP	UDP	ICMP
Bytes	Linear & NG	Non-Linear & NG	Non-Linear & NG
Packets	Non-Linear & NG	Non-Linear & NG	Linear & NG

US-JAPAN Link - Trace 4 (duration 15mins)

	TCP	UDP	ICMP
Bytes	Non-Linear & NG	Linear & NG	Non-Linear & NG
Packets	Linear & NG	Linear & NG	Non-Linear & NG

Towards protocol-specific anomaly detection

- Non-linearity & non-stationary case: applicability of energy distributions in contrast to traditional linear (a.k.a atomic) TF representations as Wavelets and the Short Fourier Transforms (STFT).
- We use particularly the Wigner-Ville distribution (WVD), a member of the Cohen Class distributions defined as:

$$W_{x}(t,\nu) = \int_{-\infty}^{+\infty} x(t + \frac{\tau}{2})x * (t - \frac{\tau}{2})e^{-j2\pi\nu\tau} d\tau$$

- Motivation :
- much better TF localization than atomic solutions
- less time costly

ICMP example (KEIO1)

PWV, Lh=225, Nf=1800, lin. scale, mesh, Threshold=5%

WVD_packets: Time processing cost: 2.14 sec

PWV, Lh=225, Nf=1800, lin. scale, mesh, Threshold=5%

WVD_bytes: Time processing cost: 2.42 sec

Comparison with Wavelets (KEIO1)

Morlet Wavelets_pkts : Time processing cost: 97.22 sec

Morlet Wavelets_bytes: Time processing cost: 131.19 sec

Conclusions

- Higher-Order Spectral analysis is a valuable and reasonably accurate tool for the demanding task of traffic modeling.
- Traffic decomposition enables tracking of protocol-specific anomalies.
- Energy distributions, in contrast to already used atomic solutions, offer a new approach consuming less processing time for detecting anomalous events making them applicable candidates for future real-time detection.

On-going & Future Work

- Extended analysis on more network traces (WIDE project).
- Investigation of energy distributions for general traffic classification.
- Refinement of scaling and smoothing factors on WVD as well as their marginal distribution properties.
- Investigation for additive noise analysis on traffic signals.
- Back-tracking validation

Thank you ©

