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Motivation & Research Questions

Have ever the “dynamic” protocol characteristics of operational traffic
been statistically visualized and fully justified?

Traffic modeling assumptions not thoroughly investigated
- Linearity?
- Gaussianity?
- Stationarity?

Current statistical techniques involving identification of linearity and
gaussianity involve simple descriptors such as 1st and 2"d order
moment sequences of a process (i.e. mean , variance,
autocorrelation sequence, etc..)

“Bucket” traffic modeling sets limits to tasks such as anomaly
detection.

Macroscopic vs. microscopic traffic view
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Our approach

= Employment of microscopic traffic view
-Volume-based analysis on short duration traces

= Traffic Decomposition
-Protocol modelling

= |ntroducing Traffic characterization using Higher Order
Spectral Analysis

- Polyspectra (mainly Bispectrum and Bicoherence)
- Hinich Algorithms

- Cohen Class Energy Distributions for anomaly
detection.

- Instant frequency and group delay for stationarity.
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Blspectrum, Blcoherence & Hinich
algorithms

= Bispectrum * defined as the FT of the 3" order cumulant sequence for
a real process X(k)

Clw,w,) = Z Zc (r,,7,) ex0{- j(@7, + 0,7,)}

=0 Ty=—0

= Bicoherence * : squared normalized version of the bispectrum

= Hinich algorithms (Linearity/ Gaussianity test)
-IF 3" order cumulant =0 => bispectrum and bicoherence =0

-IF bispectrum !'= 0 => non-Gaussian process

-IF process linear and non-Gaussian => bicoherence !'=0 and constant

* interested people on proofs and definitions please refer to: Mendel JM. "*Tutorial on higher-order statistics

(spectra) in signal processing and system theory: theoretical results and some applications.” Proceedings of
the |EEE, 79’ 3’ 278-305 * .
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= Step 1: Hypothesis testing for non-zero bispectrum

H1 : bispectrum y(n)#
H2: bispectrum y(n)

0
0
IF H1==TRUE we can test for linearity

= Step 2: Hypothesis for bicoherence
H1 : bicoherence b(n) = const

HO" : bicoherence b(n) = const

IF HO ==TRUE process is linear
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Data & Results

= Hour—long full pcap trace from a Gb Ethernet Link at KEIO University,
JP

- divided in 30-min bins (KEIO1,KEIO2)

- extracted # of bytes and pkts for each unidirectional flow for
TCP,UDP, ICMP

= Hour-long full pcap trace from a US-JP link (WIDE) 100 Mbps
FastEthernet link (SamplePoint B — MAWI Working group)

— divided in 4, 15-min bins (USJP1,USJP2,USJP3,USJP4)

- extracted # bytes and pkts for each unidirectional flow for
TCP,UDP,ICMP
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Data & Results (cont..)
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Towards protocol-pciic anomaly
detection

= Non-linearity & non-stationary case: applicability of energy distributions
In contrast to traditional linear (a.k.a atomic) TF representations as
Wavelets and the Short Fourier Transforms (STFT).

= \We use particularly the Wigner-Ville distribution (WVD), a member of
the Cohen Class distributions defined as:

W (t,v) = Tx(t +24)x*(t—7)e ™ dr

=  Motivation :
- much better TF localization than atomic solutions
- less time costly
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ICMP example (KEIO1)

Signal in time
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Comparison with Wavelets (KEIO1)
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Conclusions

= Higher-Order Spectral analysis is a valuable and
reasonably accurate tool for the demanding task of traffic

modeling.

= Traffic decomposition enables tracking of protocol-specific
anomalies.

= Energy distributions, in contrast to already used atomic
solutions, offer a new approach consuming less
processing time for detecting anomalous events making
them applicable candidates for future real-time detection.
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On-going & Future Work

= Extended analysis on more network traces (WIDE
project).
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= |nvestigation of energy distributions for general traffic
classification.

= Refinement of scaling and smoothing factors on WVD as
well as their marginal distribution properties.

= |nvestigation for additive noise analysis on traffic signals.

= Back-tracking validation
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Thank you




