Postmodern Resilience and International Collaboration in GpENI

James P.G. Sterbenz*† 제임스스터벤츠 David Hutchison[†], Bernhard Plattner Deep Medhi, Byrav Ramamurthy, Caterina Scoglio Abdul Jabbar*, Justin P. Rohrer*, Egemen Çetinkaya*

*Department of Electrical Engineering & Computer Science Information Technology & Telecommunications Research Center

The University of Kansas

†Computing Department, Infolab 21

Lancaster University

jpgs@{ittc.ku.edu,comp.lancs.ac.uk}
 http://www.ittc.ku.edu/~jpgs
 http://wiki.ittc.ku.edu/resilinets
 http://www.gpeni.net

© 2009 Sterbenz

Where is Kansas? Geography Lesson

Resilience and Heterogeneity Outline

- Resilience and heterogeneity
- Example realms
 - WDTN
 - highly mobile airborne ad-hoc networking
- Evaluation methodology
 - simulation
 - experimentation

Resilience and Heterogeneity Introduction and Motivation

- Network resilience increasingly important
 - as we increasingly rely on the Global Internet
 - increasingly a target of attack
- Heterogeneity
 - new application domains (mobility, sensors, etc.)
 - new network technologies (wireless, etc.)
- Internet architecture strained by both

ResiliNets Strategy D²R² + DR

- Real time control loop: D²R²
 - defend
 - passive
 - active
 - detect
 - remediate
 - recover
- Background loop: DR
 - diagnose
 - refine

ResiliNets Principles High Level Grouping

- Prerequisites: to understand and define resilience
- Tradeoffs: recognise and organise complexity
- Enablers: architecture and mechanisms for resilience
- Behaviour: require significant complexity to operate

End-to-End Communication Redundancy and Diversity

- E2E transport over multiple diverse paths
 - that have minimal (if any) shared fate
- Diversity in
 - service provider: resilience to contract and peering disputes (e.g. Cogent vs. Level3)
 - underlying technology: resilience to medium challenge
 - e.g weather disruption of wireless mesh links
 - path geography: resilience to natural disaster and attacks
 - e.g. Baltimore tunnel fire, Hinsdale central office fire
 - fault tolerance necessary but not sufficient for survivability
- Diversity at all layers

End-to-End Communication Example Scenario

- Realm path choices explicitly available to end user
 - spreading (e.g. erasure coding) or hot standby
 - service tradeoffs: optical when available, fail-over to wireless
 - cheapest path under dynamic pricing

End-to-End Communication Knobs and Dials

Knobs ↓	Layer	Dials ↑
service class	application	service characteristics
reliability mode	E2E transport	
PoMo knobs, FD, motiv.	PoMo internetwork	path char., geography
realm oper. parameters		realm characteristics
link type and coding (network realm	
error control type/strength	HBH link	link characteristics

- Knobs and dials between upper layers and PoMo
 - support heterogeneous subnetworks
 - e.g. lossy wireless vs. reliable wired
 - explicit signalling of path diversity and multipath
 - geographic location of realms, nodes, channels

Resilience and Heterogeneity Weather Disruption-Tolerant Networking

- Resilience strategy and principles
- Postmodern Internet Heterogeneity
- Example realms
 - WDTN
 - highly mobile airborne ad-hoc networking
- Evaluation Methodology
 - simulation
 - experimentation

Millimeter-Wave Mesh Networks Architecture

- Mesh architecture
 - high degree of connectivity
 - alternate diverse paths
 - severely attenuated mm wave
 - alternate mm links
 - alternate lower-freq. RF
 - fiber bypass (competitor)
- Approach
 - route around failures
 - *before* they occur
 - avoid high error links
 - P-WARP and XL-OSPF routing algorithms

Simulations Observed Storm in Northeast Kansas

- Millimeter-wave grid location
 - 38.8621N, 95.3793W
- Storm observed at:
 - 20:39:26Z 30 Sep 2008

Observed Storm Performance Analysis: Packet Loss

Observed Storm Performance Analysis: Cumulative Loss

Resilience and Heterogeneity Highly-Mobile Airborne Ad Hoc Networking

- Resilience strategy and principles
- Postmodern Internet Heterogeneity
- Example realms
 - WDTN
 - highly-mobile airborne ad hoc networking
- Evaluation Methodology
 - simulation
 - experimentation

Airborne Telemetry Networking Scenario and Environment

Very high relative velocity

– Mach 7 ≈ 10 s contact

dynamic topology

Communication channel

- limited spectrum
- asymmetric links
 - data down omni
 - C&C up directional
- Multihop
 - among TAs
 - through relay nodes

TA – test article GS – ground station RN – relay node GW – gateway

Airborne Telemetry Networking Link Stability and Contact Durations

Scenario	Transmit Range [nmi]	Relative Velocity	Contact Duration [sec]	
Single-Hop Best Case				
GS – TA	140	400 knots	2520	
TA – TA	15	800 knots	135	
Single-Hop Worst Case				
GS – TA	100	Mach 3.5	300	
TA – TA	10	Mach 7.0	15	

- Multihop case significantly harder
 - probability of stable end-to-end path very low

Airborne Network Protocol Suite Protocol Stack and Interoperability

- AeroTP: TCP-friendly transport
- AeroNP: IP-compatible forwarding
- AeroRP: routing

AeroTP Connection and Flow Management

- AeroTP is opportunistic: data overlaps control
 - final ACK of TCP 3WH at GW initiates AeroTP ASYN
 - data follows immediately without 3-way handshake in TmNS
 - optional AACK depending on mode; loss may retrigger ASYN

AeroRP Performance Comparison (preliminary)

- 60-node ns-2 simulation in 150×150 km² test range
- TA tx range = 15 nmi; v = [200 knot, Mach 3.5]
- CBR traffic = 200 kb/s per TA [MILCOM 2008]

Resilience and Heterogeneity Evaluation Methodology: Simulation

- Resilience strategy and principles
- Postmodern Internet Heterogeneity
- Example realms
 - WDTN
 - highly mobile airborne ad-hoc networking
- Evaluation methodology
 - simulation
 - experimentation

Evaluation Methodology Flexible and Realistic Topology Generation

- KU-LoCGen
 - evaluation of PoMo mechanisms
 - network engineering for resilience
- Level 1: backbone realms
 - nodes distributed based on location constraints
 - links generated using various models under cost constraints
- Level 2: access network realms
 - distributed around backbone nodes
 - access network connectivity: ring, star, mesh
- Level 3: subscribers
 - distributed around access network node

Evaluation MethodologyChallenge Simulation Module

- Separate challenge from network simulation
- Simulate challenges to any network over time interval
 - natural disaster: polygon destroys network infrastructure
 - attack: {node|link} down, wireless link attenuated

Evaluation MethodologyChallenge Simulation Module

- KU-CSM Challenge Simulation Module
 - challenge specification describes challenge scenario
 - network coordinates provide node geo-locations
 - adjacency matrix specifies link connectivity
 - input to conventional ns-3 simulation run
 - generates trace to plot results

KU-LoCGen

Evaluation Methodology Example: Resilience to Multiple Node Failures

- Example (and very preliminary results)
 - relationship of packet delivery ratio to multiple node failures
 - synthetic Sprint topologies generated by KU-LoCGen

Resilience State Space Operational Resilience

- Operational resilience
 - minimal degradation
 - in the face of challenges
- Resilience state
 - remains in normal operation

Operational State $\,\mathbb{N}\,$

Normal Operation	Partially Degraded	Severely Degraded
S		

Resilience State Space Service Resilience

- Service resilience
 - acceptable service
 - in the face of degraded operation
- Resilience state
 - remains in acceptable service

Operational State N

Resilience State Space Resilience Trajectories

- Choose scenario
 - network
 - application
- Metrics
 - choose
 - aggregate
- Observe
 - under challenge

Resilience and Heterogeneity Evaluation Methodology: Experimentation

- Resilience strategy and principles
- Postmodern Internet Heterogeneity
- Example realms
 - WDTN
 - highly mobile airborne ad-hoc networking
- Evaluation methodology
 - simulation
 - experimentation

GENI Overview

- GENI: Global Environments for Network Innovation
 - funded by the US NSF
 - managed by the GPO (GENI Project Office BBN)
- Goal: new experimental network infrastructure
- 1st solicitation: 29 projects funded
 - grouped into 5 control framework clusters (PlanetLab, ...)
 - including 2 regional testbeds (GpENI and MANFRED)
- 2nd solicitation closed and under final review
 - decisions hopefully by GEC5 (July in Seattle)
 - FIRE/GENI workshop in conjunction with GEC5

GpENIOverview

- GpENI [dʒε'pi ni]
 Great Plains Environment for Network Innovation
- Regional network part of Cluster B in GENI Spiral 1
 - exploiting new fiber infrastructure in KS, MO, and NE

GpENIProject Goals

- Collaborative research infrastructure in Great Plains
- Flexible infrastructure to support GENI program
- Open environment for network research community
- Outreach to grow GpENI infrastructure
 - Great Plains region
 - internationally including EU FIRE

GpENI Physical Topology and Network Infrastructure

- Physical topology
 - multiwavelength optical backbone
 - current or imminent deployment
 - 4 universities in 3 states
 - 1 switch/year with current funding

GpENINode Cluster

prog. routers

VINI.

XORP.

click,...

- GpENI cluster
- 5–10 PCs
 - GpENI mgt.
 - L4: PlanetLab
 - L3: prog. routers
- GbE switch
 - arbitrary interconnection
 - VLAN connectivity to GENI
 - SNMP cluster monitoring
- Ciena optical switch
 - L1 GpENI interconnection

GpENIGPN Proposed Expansion

Regional US GpENI partners

South Dakota: 3 universities

Missouri: 1 university

GMOC at Indiana University

GpENIEuropean Proposed Expansion

GpENIAsian Proposed Expansion

End