An Algorithm for Distributed Resource Allocation in QoS Overlays based on Vickrey-like Auctions

Raúl Landa, Richard Clegg, Eleni Mykoniati, David Griffin, Miguel Rio

Networks and Services Research Laboratory
Department of Electronic and Electrical Engineering
University College London
Our Objective

• Auctions are a well-known way of performing distributed resource allocation in networking

• However, they can suffer from slow convergence

• We address this by proposing algorithms to
 – **Resolve auctions faster**, by auctioning many items at the same time
 – **Reduce the number of wasted bids**, by allowing peers to estimate the probability of a bid being successful
Sealed-envelope, Highest-losing bid Auction (SHA)

- An auctioneer \(i\) sells \(N_i\) indistinguishable items.

- Each bidder \(j\) sends a set \((b_{m_{ji}}, b_{m_{ji}-1}, \ldots, b_2, b_1)\) of bids \(b_{ij}\) for all the items it is interested in, each for a value \(v_{ij}\).

- Auctioneers rank all the received bids in increasing order, and the top \(N_i\) win the items.

- Each winning peer pays the value of the highest losing bid for its item.
Revelation Properties of the SHA

- We have proved analytically that truthful revelation of value is a dominant strategy equilibrium:
 - Conjecture, for each bidder, a bidding strategy
 \[
 \left(b_{m_ji}^{ji}(v_{ij}), b_{m_ji-1}^{ji}(v_{ij}), \ldots, b_2^{ji}(v_{ij}), b_1^{ji}(v_{ij}) \right)
 \]
 - Formulate peer utility as a function of this strategy
 \[
 \phi_j = \int_0^{b_{1}^{ji}} m_{ji}(v_{ij} - y)f_V(y)dy + \sum_{k=1}^{k=m_{ji}-1} \int_{b_{k}^{ji}}^{b_{k+1}^{ji}} (m_{ji} - k)(v_{ij} - y)f_V(y)dy
 \]
 - Find the strategy that maximizes peer utility
 \[
 b_{m_{ji}}^{ji} = b_{m_{ji}-1}^{ji} = \ldots = b_2^{ji} = b_1^{ji} = v_{ij}
 \]
Estimating SHA Outcomes

- Use of statistics of the \(k \)-th smallest value of a multi-item statistical sample (order statistics)
- Express \(P(V^i(k) \leq v_{ij}) \) in terms of order statistics

\[
P(V^i(k) \leq v_{ij}) = \int_0^{v_{ij}} \frac{m_{ji}!}{(k-1)!(m_{ji}-k)!} F_{V^i}(\omega)^{k-1}(1 - F_{V^i}(\omega))^{m_{ji}-k} f_{V^i}(\omega) d\omega
\]

- Find the ranks of the order statistics for which a peer wins a given number of auctions

\[
k_0 = \max(1, M_i - N_i + 1)
\]
\[
k_1 = \min(k_0 + m_{ji} - 1, M_i)
\]
Estimating SHA Outcomes

• For instance, assume that there are 6 items for sale ($N_i = 6$). Then:

$$k_0 = M_i - 5$$

<table>
<thead>
<tr>
<th>Bid Rank</th>
<th>M_i</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>$M_i - 1$</td>
</tr>
<tr>
<td></td>
<td>$M_i - 2$</td>
</tr>
<tr>
<td></td>
<td>$M_i - 3$</td>
</tr>
<tr>
<td></td>
<td>$M_i - 4$</td>
</tr>
<tr>
<td></td>
<td>$M_i - 5$</td>
</tr>
<tr>
<td></td>
<td>\vdots</td>
</tr>
<tr>
<td></td>
<td>1</td>
</tr>
</tbody>
</table>
Estimating SHA Outcomes

• For instance, assume that there are 6 items for sale \(N_i = 6 \). Then:
 \[k_0 = M_i - 5 \]

• \(k_1 \) will depend on how many bids the peer sends.

<table>
<thead>
<tr>
<th>Bid Rank</th>
<th>Decreasing Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>(M_i)</td>
<td>6</td>
</tr>
<tr>
<td>(M_i - 1)</td>
<td>5</td>
</tr>
<tr>
<td>(M_i - 2)</td>
<td>4</td>
</tr>
<tr>
<td>(M_i - 3)</td>
<td>3</td>
</tr>
<tr>
<td>(M_i - 4)</td>
<td>2</td>
</tr>
<tr>
<td>(M_i - 5)</td>
<td>1</td>
</tr>
</tbody>
</table>

If the value of bid of the peer is ranked here, it can win at most 1 item - independently of how many bids it sends.
Estimating SHA Outcomes

<table>
<thead>
<tr>
<th>Bid Rank</th>
<th>Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>M_i</td>
<td></td>
</tr>
<tr>
<td>$M_i - 1$</td>
<td></td>
</tr>
<tr>
<td>$M_i - 2$</td>
<td></td>
</tr>
<tr>
<td>$M_i - 3$</td>
<td></td>
</tr>
<tr>
<td>$M_i - 4$</td>
<td></td>
</tr>
<tr>
<td>$M_i - 5$</td>
<td></td>
</tr>
<tr>
<td>...</td>
<td></td>
</tr>
<tr>
<td>1</td>
<td></td>
</tr>
</tbody>
</table>

If the value of bid of the peer is ranked here, it can win at 1 item if it sends 1 bid, and 2 items if it sends more.

- For instance, assume that there are 6 items for sale ($N_i = 6$). Then:
 \[k_0 = M_i - 5 \]

- k_1 will depend on how many bids the peer sends.
Estimating SHA Outcomes

- For instance, assume that there are 6 items for sale ($N_i = 6$).
 Then:

 $k_0 = M_i - 5$

- k_1 will depend on how many bids the peer sends.

<table>
<thead>
<tr>
<th>Bid Rank</th>
<th>Decreasing Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>M_i</td>
<td></td>
</tr>
<tr>
<td>$M_i - 1$</td>
<td></td>
</tr>
<tr>
<td>$M_i - 2$</td>
<td></td>
</tr>
<tr>
<td>$M_i - 3$</td>
<td></td>
</tr>
<tr>
<td>$M_i - 4$</td>
<td></td>
</tr>
<tr>
<td>$M_i - 5$</td>
<td></td>
</tr>
<tr>
<td>...</td>
<td></td>
</tr>
<tr>
<td>1</td>
<td></td>
</tr>
</tbody>
</table>

If the value of bid of the peer is ranked here, it can win at 1 item if it sends 1 bid, and 2 items if it sends 2, or 3 items if it sends more.
Estimating SHA Outcomes

- We can now calculate the expected number of items won, given that N_i are bid for at a value of v_{ij}.

$$\mu(v_{ij}, N_i, m_{ji}) = \sum_{k = k_0(v_{ij}, N_i)}^{k_1(v_{ij}, N_i)} I(F_{V_i}(v_{ij}); k, m_{ji} - k + 1)$$

- Where $I(x; k, n)$ is the regularized, incomplete beta function.

- The standard deviation can be found equivalently.
Simulation

• To test the analytic results presented before, we use an artificial bimodal value distribution as shown.

• Bids are generated according to this distribution, and the expected number of items won is recorded for discrete values of v_{ji}.
Estimating the number of bids won

- **Offered Items: 1**
- **Offered Items: 5**
- **Offered Items: 10**
- **Offered Items: 15**
- **Offered Items: 20**
- **Offered Items: 25**
- **Offered Items: 30**
- **Offered Items: 35**
- **Offered Items: 40**

Analytically predicted outcome

Results from simulation

Raúl Landa

An Algorithm for Distributed Resource Allocation in QoS Overlays based on Generalised Vickrey Auctions

MSN 2009

Friday, 10 July 2009
Estimating the variability in bids won

Offered Items: 1

Offered Items: 5

Offered Items: 10

Offered Items: 15

Offered Items: 20

Offered Items: 25

Offered Items: 30

Offered Items: 35

Offered Items: 40

Analytically predicted outcome

Results from simulation
SHA and P2P Live Streaming Overlays

• We use auctions to perform capacity/delay tradeoffs in P2P streaming overlays.

• For each chunk they are interested in,
 – Peers send a bid to the peer that gives them the greatest value for that chunk;
 – If the expected number of times the chunk will be received is smaller than 1, the process is repeated.
 – The process takes peer capacity, delay and load into account.
De-centralised Overlay Topology Construction

An Algorithm for Distributed Resource Allocation in QoS Overlays based on Generalised Vickrey Auctions
System converges to a “tree-like” equilibrium topology, with peers with lower delays from the source uploading much more actively than peers with larger delays. This tends to minimize stream delay.
De-centralised Overlay Topology Construction

Good stream delay from the source, only around 40/50% higher than for a direct connection from the stream originating peer.
Future Work: Lost Chunks ("Slips")

Effect related to the variance endogenous to the bidding method.

An Algorithm for Distributed Resource Allocation in QoS Overlays based on Generalised Vickrey Auctions

Raúl Landa

MSN 2009
Future Work: High Chunk Jitter
Thank You!

Questions?
High Chunk Delay

Suboptimal bidding due to interactions between chunk search and bidding