

An Algorithm for Distributed Resource Allocation in QoS Overlays based on Vickrey-like Auctions

Raúl Landa, Richard Clegg, Eleni Mykoniati, David Griffin, Miguel Rio

Networks and Services Research Laboratory Department of Electronic and Electrical Engineering University College London

Our Objective

- Auctions are a well-known way of performing distributed resource allocation in networking
- However, they can suffer from slow convergence
- We address this by proposing algorithms to
 - Resolve auctions faster, by auctioning many items at the same time
 - Reduce the number of wasted bids, by allowing peers to estimate the probability of a bid being successful

Raúl Landa

An Algorithm for Distributed Resource Allocation in QoS Overlays based on Generalised Vickrey Auctions

Sealed-envelope, Highest-losing bid Auction (SHA)

- An auctioneer i sells N_i indistinguishable items.
- Each bidder j sends a set $(b_{m_{ji}}^{ji}, b_{(m_{ji}-1)}^{ji}, \ldots, b_2^{ji}, b_1^{ji})$ of bids b^{ji} for all the items it is interested in, each for a value v_{ij} .
- Auctioneers rank all the received bids in increasing order, and the top N_i win the items.
- Each winning peer pays the value of the *highest losing bid* for its item.

Raúl Landa

An Algorithm for Distributed Resource Allocation in QoS Overlays based on Generalised Vickrey Auctions

MSN 2009

Revelation Properties of the SHA

- We have proved analytically that truthful revelation of value is a dominant strategy equilibrium:
 - Conjecture, for each bidder, a bidding strategy

$$\left(b_{m_{ji}}^{ji}(v_{ij}), b_{m_{ji}-1}^{ji}(v_{ij}), \dots, b_2^{ji}(v_{ij}), b_1^{ji}(v_{ij})\right)$$

- Formulate peer utility as a function of this strategy

$$\phi_j = \int_0^{b_1^{ji}} m_{ji}(v_{ij} - y) f_V(y) dy + \sum_{k=1}^{k=m_{ji}-1} \int_{b_k^{ji}}^{b_{k+1}^{ji}} (m_{ji} - k)(v_{ij} - y) f_V(y) dy$$

- Find the strategy that maximizes peer utility

$$b_{m_{ji}}^{ji} = b_{m_{ji}-1}^{ji} = \ldots = b_2^{ji} = b_1^{ji} = v_{ij}$$

- Use of statistics of the k-th smallest value of a multi-item statistical sample (order statistics)
- Express $\mathbb{P}(V^{i}_{(k)} \leq v_{ij})$ in terms of order statistics

$$\mathbb{P}(V^{i}_{(k)} \leq v_{ij}) = \int_{0}^{v_{ij}} \frac{m_{ji}!}{(k-1)!(m_{ji}-k)!} F_{V^{i}}(\omega)^{k-1} (1 - F_{V^{i}}(\omega))^{m_{ji}-k} f_{V^{i}}(\omega) d\omega$$

 Find the ranks of the order statistics for which a peer wins a given number of auctions

$$k_0 = \max(1, M_i - N_i + 1)$$

$$k_1 = \min(k_0 + m_{ji} - 1, M_i)$$

• For instance, assume that there are 6 items for sale $(N_i = 6)$. Then:

$$k_0 = M_i - 5$$

Raúl Landa

An Algorithm for Distributed Resource Allocation in QoS Overlays based on Generalised Vickrey Auctions

MSN 2009

If the value of bid of the peer is ranked here, it can win at most 1 item independently of how many bids it sends. • For instance, assume that there are 6 items for sale $(N_i = 6)$. Then:

 $k_0 = M_i - 5$

 k₁ will depend on how many bids the peer sends.

Raúl Landa

If the value of bid of the peer is ranked here, it can win at 1 item if it sends 1 bid, and 2 items if it sends more.

- For instance, assume that there are 6 items for sale $(N_i = 6)$. Then:
 - $k_0 = M_i 5$
- k₁ will depend on how many bids the peer sends.

Raúl Landa

If the value of bid of the peer is ranked here, it can win at 1 item if it sends 1 bid, and 2 items if it sends 2, or 3 items if it sends more.

- For instance, assume that there are 6 items for sale $(N_i = 6)$. Then:
 - $k_0 = M_i 5$
- k₁ will depend on how many bids the peer sends.

Raúl Landa

An Algorithm for Distributed Resource Allocation in QoS Overlays based on Generalised Vickrey Auctions

MSN 2009

• We can now calculate the expected number of items won, given that N_i are bid for at a value of v_{ij} .

$$\mu(v_{ij}, N_i, m_{ji}) = \sum_{k=k_0(v_{ij}, N_i)}^{k_1(v_{ij}, N_i)} I(F_{V^i}(v_{ij}); k, m_{ji} - k + 1)$$

- Where I(x; k, n) is the regularized, incomplete beta function.
- The standard deviation can be found equivalently.

Raúl Landa

An Algorithm for Distributed Resource Allocation in QoS Overlays based on Generalised Vickrey Auctions

MSN 2009

Simulation

- To test the analytic results presented before, we use an artificial bimodal value distribution as shown
- Bids are generated according to this distribution, and the expected number of items won is recorded for discrete values of v_{ji}.

Raúl Landa

Estimating the number of bids won

Raúl Landa

An Algorithm for Distributed Resource Allocation in QoS Overlays based on Generalised Vickrey Auctions

MSN 2009

Estimating the variability in bids won

Raúl Landa

An Algorithm for Distributed Resource Allocation in QoS Overlays based on Generalised Vickrey Auctions

MSN 2009

SHA and P2P Live Streaming Overlays

- We use auctions to perform capacity/delay tradeoffs in P2P streaming overlays.
- For each chunk they are interested in,
 - Peers send a bid to the peer that gives them the greatest value for that chunk;
 - If the expected number of times the chunk will be received is smaller than 1, the process is repeated.
 - The process takes peer <u>capacity</u>, <u>delay</u> and <u>load</u> into account.

≜UCL

De-centralised Overlay Topology Construction

Raúl Landa

An Algorithm for Distributed Resource Allocation in QoS Overlays based on Generalised Vickrey Auctions

MSN 2009

≜UCL

De-centralised Overlay Topology Construction

Raúl Landa

An Algorithm for Distributed Resource Allocation in QoS Overlays based on Generalised Vickrey Auctions

MSN 2009

UCL

De-centralised Overlay Topology Construction

Raúl Landa

An Algorithm for Distributed Resource Allocation in QoS Overlays based on Generalised Vickrey Auctions

Future Work: Lost Chunks ("Slips")

Raúl Landa

An Algorithm for Distributed Resource Allocation in QoS Overlays based on Generalised Vickrey Auctions

MSN 2009

[±]UCL

Future Work: High Chunk Jitter

Raúl Landa

An Algorithm for Distributed Resource Allocation in QoS Overlays based on Generalised Vickrey Auctions

MSN 2009

Thank You!

Questions?

Raúl Landa

An Algorithm for Distributed Resource Allocation in QoS Overlays based on Generalised Vickrey Auctions

MSN 2009

High Chunk Delay

Raúl Landa

An Algorithm for Distributed Resource Allocation in QoS Overlays based on Generalised Vickrey Auctions

MSN 2009