

Outline

- Introduction: what IPTV is not, and why do we care
- Motivation to model IPTV services
- ▶ The IPTV traffic model, in some detail (W.I.P.)
- Conclusions

What IPTV is not

IPTV is a cable-like TV service offered on top of an IP network

Why do we care with IPTV?

- One of the fastest growing television services in the world [1]
 - 2005: 2 million users
 - ▶ 2007: I4 million users
 - ...and growing
- High bandwidth and strict QoS requirements
 - Big impact in the IP network

[1] Parks Associates. Tv services in Europe: Update and Outlook, 2008

Overview of an IPTV network

Motivation – Why do we need a realistic IPTV Traffic Model?

- Brand new service on top of an IP network
- User behaviour very different from other IP-based applications

Motivation – Why do we need a realistic IPTV Traffic Model?

- ▶ To evaluate different delivery systems for IPTV
- To evaluate different network architectures for IPTV

The dataset

- We have analysed real IPTV data from one of the largest IPTV service providers
 - ~ 6 months worth of data
 - ➤ ~ 250,000 customers
 - ∼ 620 DSLAMs
 - → ~ I50 TV channels

▶ NB:We consider a user is zapping if he switches between 2 TV channels in less than 1 minute.

IPTV Traffic Model

Workload characteristics

- Zapping blocks containing a random number of switching events (zapping period)
- Separated by watching/away periods of random length

IPTV Traffic Model

IPTV Traffic Model - Detailed

Findings:

Empirical data fits with 2 gamma and 1 exponential (consistent across regions)

To do:

Check consistency for different channels Check consistency for period of the day

IPTV Traffic Model - Detailed

2. Find y = number of channels to be zapped

Findings:

Empirical data fits with gamma distribution (consistent across regions)

To do:

Check consistency for period of the day

IPTV Traffic Model - Detailed

Findings:

Popularity is a) Zipf-like for top channels, b) decays abruptly for non-popular ones.

To do:

Add dependency of previous channel.

Conclusions

- Preliminary results of an IPTV Workload model were presented
- Some of the main findings:
 - Workload characteristics: Burst (zapping) periods separated by watch/way periods
 - Popularity: a) Zipf-like for top channels, b) decays fast for non-popular ones
 - Watching period empirical data fits with 2 gamma and I exponential distributions
 - Number of channels in a zap period fits with gamma distribution
- ▶ See you at the SIGCOMM Poster Session! ©

THANK YOU!

fernando.ramos@cl.cam.ac.uk

