A Machine Learning Approach to Loss Differentiation Solution in 802.11 Wireless Networks

Sofia Pediaditaki and Mahesh Marina

s.pediaditaki@sms.ed.ac.uk mmarina@inf.ed.ac.uk University of Edinburgh

Introduction

- 802.11 Causes of Packet Losses:
 - Channel errors
 - Interference (collisions or hidden terminals)
 - Mobility, handoffs, queue overflows, etc.
- How can a sender infer the actual cause of loss with:
 - No or little receiver feedback
 - A lot of uncertainty (time-varying channels, interference, traffic patterns, etc.).
- Use machine learning algorithms!

Do we Need Loss Differentiation?

Rate Adaptation:

- − Channel error → Lower rate improves SNR
- Collision → Lower rate worsens problem

DCF mechanism:

- In 802.11, cause of loss is collision by default
- Doubling the contention window hurts performance if cause is channel error
- Various other applications (e.g. Carrier sensing threshold adaptation [Ma et al – ICC'07])

State of the Art

Rate Adaptation Algorithms [CARA-Infocom'06, RRAA-MobiCom'06]

- Use RTS/CTS to infer cause of loss
 - Small frames resilient to channel errors
 - Medium is captured
 Data packet is lost due to channel error
- Drawbacks
 - RTS/CTS is rarely used in practice
 - Extra overhead
 - Hidden terminal issue not fully resolved
 - Potential unfairness

Our Aim

- A general purpose loss differentiator which is:
 - Accurate and efficient:
 - responsive and robust to the operational environment
 - Supported by commodity hardware
 - fully implementable in the device driver without e.g. MAC changes
 - Has acceptable computational cost and low overhead
 - Requires no (or little) information from the receiver

The Proposed Approach

- Loss differentiation can be seen as a "classification" problem
 - Class labels: Types of losses
 - Features: Observable data
 - Goal: Assign each error to a class
- The Classification Process:
 - Training Phase:
 - < attributes, class > pairs as training data
 - Operational Phase:
 - Classify new "unlabeled" data (test data)

The Classification Process

Performance Evaluation (1/2)

- Training data using *Qualnet* Simulator
 - Single-hop random topologies (WLANs)
 - Varying number of rates and flows, with or without fading
 - Multi-hop random topologies
 - One-hop traffic, multiple rates, with or without fading
- Learning algorithms using Weka workbench (University of Waikato, New Zealand)
- Classes of interest:
 - Channel errors
 - Interference

Performance Evaluation (2/2)

Classification Features:

- Rate
 - The higher the rate, the higher the channel error probability
- Retransmissions No
 - Due to backoff, collision probability decreases across retransmissions
- Channel Busy Time
- Observed channel errors and collisions

Easily obtained at the sender

Preliminary Results: No fading

Try the simple things first (K.I.S.S. Rule)!

Bayes Method	Prediction Accuracy%		Training Time (sec)
Naive Bayes	WLAN	WLAN-MH	0.01
	99.5	95.9	

- 29303 WLAN 55140 WLAN-MH instances
- 10-fold Cross Validation
- Almost perfect predictor
 - But things are not that simple!

Preliminary Results: All together

A small step for man ...

Bayes Method	Prediction Accuracy%	Training Time (sec)
Naive Bayes	87	0.06
Bayesian Net	87.7	0.15

- 125213 instances
- 10-fold Cross Validation
- Naive Bayes assumes attributes are independent
- Bayesian Networks make Naive Bayes less "naive"

Discussion

- Which machine learning algorithm is more appropriate to use?
- Which features are the most representative?
- Is this solution generalizable?
- Can we use the solution as it is in real hardware?
- How much training is it required?
 - What if we use semi-supervised learning?

Summary

- Why do we need a loss differentiator:
 - Rate adaptation algorithms, 802.11 DCF mechanism, ...
- We propose a machine learning-based predictor
 - Handles loss differentiation as "classification" problem
- There are still many things do be we should consider...
- So, can we use such solution?
 - Yes, we can [Obama '08]
 - Preliminary results show we could ©

Thank you

Questions?

