

Achieving Resilient Routing in the Internet

Outline

- Introduction & Motivation
- IP Fast Re-Route Framework
- Fast Failure Detection
- Existing Repair Paths Mechanisms
- Fast Re-Route Using Alternate Next Hop Counters (ANHC)
- Performance Evaluation
- Conclusions

Introduction & Motivation

- Evidently, Internet is resilient to random failures.
- Alas, it is not tolerable for sensitive applications.
- Massive amount of packets are dropped during routing convergence.
- Several approaches have been proposed: shortening the convergence time, pre-computing backup paths, overlays, *etc*.
- Loop-free environment and routing consistency are important.

IP Fast Re-Route Framework

- Rescue packets from failures as fast as possible without waiting for the network to converge.
- Disruption time:
 - time to detect and react to failures.
 - time to implement new routes into forwarding tables.
- Two main mechanisms*:
 - Mechanisms for fast failure detection.
 - Mechanisms for repair paths.

Fast Failure Detection Mechanisms

- In general, protocol parameters used to detect failures are:
 - Hello interval: default is ~10 seconds.
 - Dead router interval: default is ~30-40 seconds (usually multiples of Hello interval).
- Tweaking the Hello interval: ms < t < s*
- Minimum Hello interval for IS-IS, however, is 1s
- Too short interval leads to routing instabilities as the failures may be intermittent.

*Achieving Faster Failure Detection in OSPF Networks (M. Goyal, et al.)

Loop-Free Alternates (LFAs)

- A neighbour of a detecting node can be used as an LFA if it neither causes the traffic to traverse the failure nor creates a forwarding loop.
- LFAs are categorised by their abilities:
 - Loop-Free Condition (LFC): link protecting LFA.
 - Node-Protection Condition (NPC): node protecting LFA.
 - Downstream Condition (DSC): loop-free LFA in the presence of multiple failures.
 - Equal-Cost Alternates (ECA): equal-cost paths.
- LFAs are simple, but their repair coverage heavily depends on the underlying topologies.

Not-Via Addresses

- Special addresses used to deviate the traffic around the failures.
- Requires IP-in-IP tunnelling.
- Packets are forwarded along the path avoiding the failed element.
- Guarantee 100% repair coverage for any recoverable single failures.
- However, it may degrade the performance of a router due to additional processing.

Fast Re-Route Using Alternate Next Hop Counters (ANHC)

- Guarantees 100% repair coverage for any single link failures.
- Does not employ mechanisms such as tunnels.
- Requires additional information for each existing destination in the routing table (no additional entry is required).
- Does not incur any significant overheads.
- Alternate paths are near optimal.
- Its impact on the traffic is comparable to OSPF reroute (normal convergence).

Computing the Alternate Paths (1)

 Creating some correlations between alternate paths from different origins to the same destination. The arrows form a SPT rooted at R6.

Computing the Alternate Paths (2)

• How? For all origins to the same destination, compute the alternate paths that are maximally edge disjoint from the normal paths.

Computing the Alternate Paths (3)

• How? For all origins to the same destination, compute the alternate paths that are maximally edge disjoint from the normal paths.

Computing the Alternate Paths (4)

- In this topology, the total link weight is 13.
- The figure shows an example of alternate path computation of R2 to R6.

Computing the ANHC values (1)

- Compare the hops of local alternate paths with the alternate next hop of intermediate nodes.
- REQUIRE:
 - Alternate path from R2 to R6
 - Alternate next hops (ANHs) from all origins to R6.
- R2s alternate path: $R2 \rightarrow R1 \rightarrow R4 \rightarrow R6$
- ANHs: R1:R4, R2:R1, R3:R1, R4:R1, R5:R2
- ANHC(R2, R6) = **0**, R1 = R2s ANH?, YES

Computing the ANHC values (2)

- Compare the hops of local alternate paths with the alternate next hop of intermediate nodes.
- REQUIRE:
 - Alternate path from R2 to R6
 - Alternate next hops (ANHs) from all origins to R6.
- R2s alternate path: $R2 \rightarrow R1 \rightarrow R4 \rightarrow R6$
- ANHs: R1:R4, R2:R1, R3:R1, R4:R1, R5:R2
- ANHC(R2, R6) = **1**, R4 = R1s ANH?, YES

Computing the ANHC values (3)

- Compare the hops of local alternate paths with the alternate next hop of intermediate nodes.
- REQUIRE:
 - Alternate path from R2 to R6
 - Alternate next hops (ANHs) from all origins to R6.
- R2s alternate path: R2 \rightarrow R1 \rightarrow R4 \rightarrow R6
- ANHs: R1:R4, R2:R1, R3:R1, R4:R1, R5:R2
- ANHC(R2, R6) = **2**, R5 = R4s ANH?, NO

Alternate Next Hop Counting Mechanisms (1)

- Normal forwarding in failure-free case.
- When a failure occurs, the detecting node marks the packet with ANHC value.
- The ANHC value is decreased by 1 and forwarded to the alternate next hop.
- Each router receiving a re-routed packet determines the ANHC value.
 - ANHC > 0: decrements it and forwards the packet to its alternate next hop.
 - ANHC = 0: forwards the packet along the normal path.

Alternate Next Hop Counting Mechanisms (2)

- R2 set ANHC(R2, R6) = 2.
- R2 decreases ANHC to 1 & forwards the packet.
- R1 decreases ANHC to 0 & forwards the packet.

Preventing Loops Under Multiple Failures

- ANHC requires few bits in the packet header.
- Simulation results of practical topologies show that the optimal number of bits required is 3.
- In the presence of multiple failures, forwarding loops are possible.
- Employ an extra bit to indicate a re-routed packet. Thus, if a marked packet encounters another failure, it will be dropped immediately.
- Total number of bits required is 4.
- TOS in IPv4 or Traffic Class in IPv6 may be used.

Path Length Strecth

• Path length stretch :- the ratio between the alternate path cost and the optimal shortest path.

Maximum Link Utilisation (MLU)

- Abilene real TMs*.
- Sprint TMs* generated based on gravity model.

*Traffic matrices are scaled so that no MLU > 1 under normal convergence.

Total Network Throughput

• Total network throughput after different failure scenarios.

Conclusions

- Network reliability problem is very challenging due to ongoing demand for highly reliable delivery.
- Existing solutions such as LFAs, U-turn, and tunnels do not provide full repair coverage.
- Not-via addresses guarantee recovery from any single recoverable failures.
- Fast re-route using ANHC provides full protection against single link failures without using tunnels.
- Fast re-route using ANHC does not incur any significant overheads or impact on network traffic.

Thank you!

