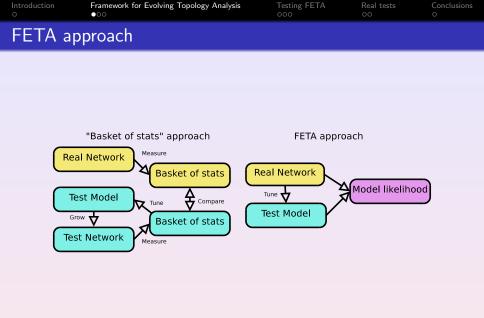
Framework for Evolving Topology Analysis

Testing FE 000 Real tests 00

Conclusions 0

A statistically rigorous way to analyse network topology models

Richard G. Clegg (richard@richardclegg.org) (UCL)


Cosener's NGN 2009

(Prepared using LATEX and beamer.)

Introduction	Framework for Evolving Topology Analysis	Testing FETA	Real tests	Conclusions
•		000	00	0
Introduc	tion			

Growing artificial networks

- Want to grow networks with same properties as real networks.
- Want to be able to describe evolution of the real network.
- Want to assess simple processes which explain the evolution of the network.
- Want to be able to compare rival theories about the evolution.
- Background: scale free networks, Preferential Attachment, PFP, GLP models.
- Use historic data on evolution.
- FETA Framework for Evolving Topology Analysis.
- Framework for comparing models not to give best model.
- Single rigorous statistic not many indicative ones.

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 三臣 - のへで

Introduction	Framework for Evolving Topology Analysis	Testing FETA	Real tests	Conclusions
O	○●○		00	O
Inner mo	odel evaluation			

- For simplicity consider graphs which evolve using only the "connect to new node" operation.
- Let θ be some candidate inner model a map from node numbers to probability distribution.
- Model must explain observed node choices

$$C=N_1,N_2,\ldots,N_t.$$

- Want to compare θ with rival model θ' or with null model θ_0 .
- Let p_j(k|θ) be the probability node k is chosen at stage j (based on graph at this stage and possibly other factors).

Likelihood of observed choices C

The likelihood of the observed node choices C given model θ is

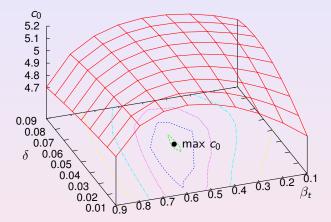
$$L(C|\theta) = \prod_{j=1}^{t} p_j(N_j|\theta).$$

Introduction	Framework for Evolving Topology Analysis	Testing FETA	Real tests	Conclusions
O	○○●	000	00	O
Building	models from componen	its		

- Inner model θ could be built from components:
 - **(**) θ_d Preferential attachment model prob. prop. to degree d.
 - **2** $\theta_p(\delta)$ the PFP model with δ parameter –prob. prop. to $d^{(1+\delta \log_{10}(d))}$.
 - **3** θ_S singleton model prob. const. for degree = 1 or 0 otherwise.
 - $\theta_r(N)$ the "recent" model prob. const. for nodes picked in the last N choices or 0 otherwise.

Example model from components

$$\theta = \beta_{\mathsf{S}}\theta_{\mathsf{S}} + \beta_{\mathsf{p}}\theta_{\mathsf{p}}(\delta) + \beta_{\mathsf{r}}\theta_{\mathsf{r}}(\mathsf{N}),$$


where $\beta_{\bullet} \in (0, 1)$ and $\beta_{S} + \beta_{p} + \beta_{r} = 1$.

Need to optimise β_S , β_p , β_r , δ and N!

O OO OO O	Artificio	l tests – parameter swee	an		
	Introduction 0	Framework for Evolving Topology Analysis	Testing FETA ●00	Real tests 00	Conclusions 0

- The most convincing test of such a model is its ability to recover parameters from a known model.
- Consider the inner model $\theta = 0.5\theta_p(0.05) + 0.5\theta_t$ (PFP + triangles).
- Remember for PFP prob. of connecting to node *i* is $p_i \sim d_i^{1+\delta \log_{10} d_i}$ for triangles prob is proportional to node triangle count.
- Outer model is simple node connects to three nodes.
- Create a test network of 10,000 nodes .
- \bullet Now try to recover "unknown" δ and β parameters
- Measure c_0 ratio of likelihood versus θ_0 normalised by |C| = t,
- Find δ and β_t to maximise c_0 .

Max c_0 at $\delta = 0.0525$ and $\beta_t = 0.5$.

Artificia	l tests – General linear r	models		
Introduction	Framework for Evolving Topology Analysis	Testing FETA	Real tests	Conclusions
0		00●	00	0

- Test model $\theta = 0.25\theta_0 + 0.25\theta_t + 0.25\theta_S + 0.25\theta_D$.
- Here the GLM is tested with an additional spurious model component θ_d (preferential attachment).
- The θ_d component is rejected.

Parameter	Estimate	Significance
β_0	0.33 ± 0.059	0.1%
β_t	0.29 ± 0.017	0.1%
β_{S}	0.24 ± 0.016	0.1%
β_D	0.23 ± 0.022	0.1%
eta_{d}	-0.089 ± 0.059	5%

Introduction O	Framework for Evolving Topology Analysis	Testing FETA	Real tests ●0	Conclusions 0
Real data	a tests			

- Tests have been performed on five real networks two from social networks (photo sharing), two models of the internet AS and one publication network (arxiv).
- Model sizes varied from 15,788 links to 98,931.
- Hypothetical models are created from components using GLM and their *c*₀ measured.
- Claim is that the c₀ is a good predictor of success at predicting network.
- Test three candidate models "random" (θ_0), "best PFP" (PFP model with optimised δ) and "best" (best combination of submodels found.
- Calculate "best model" using c₀ value.
- Grow artificial models and measure sample network statistics.

Introduction	Framework for Evolving Topology Analysis	Testing FETA	Real tests	Conclusions
O		000	○●	O
Real dat	a results			

- In all networks tested, *c*₀ was an excellent predictor of how well an artificial network would replicate statistics.
- It is much quicker to measure c_0 than to grow an artificial network and measure statistics.
- The sub models tested here did not perfectly replicate all network statistics (but then that was not the aim).
- In particular the sub models I use now do not capture clustering or assortativity well.
- If the data is available then this likelihood statistic is the way we should be assessing potential network models.
- The c₀s statistic is a single, fast and rigorous measure of network likelihood.

Introduction	Framework for Evolving Topology Analysis	Testing FETA	Real tests	Conclusions
0		000	00	•
Further	work			

Take home messages

- Likelihood measures are the way to assess network models.
- New network models created from combining sub models.
- Standard statistics techniques (GLM) can optimise submodel weights.

۲

- Software and data freely available see website http://www.richardclegg.org/software/FETA
- I am very keen to collaborate give me your network and I will analyse it for you.