Designing a Multipath

! Transport Protocol

Costin Raiciu

Joint work with Mark Handley
Part of the Trilogy EU Project

Problem

= Design a multipath version of TCP
= In order, reliable delivery
= Byte addressed

= Why TCP?

= Biggest chance of getting deployed
= Any new protocol must interoperate with TCP anyway

= Why Multipath?

Why Multipath”?

= Itis possible today
= A lot of multihoming - x% of Ases

= More devices with multiple internet connections
= Mobile phones

= Just share your wireless with your neighbour
= Theoretical results for stable algorithms
= Applications are doing it anyway!
= No changes required in the core
= For the endpoints
= Better robustness
= Better throughput
= Increased competition among ISPs

Why Multipath? [2]

= For the Internet

= A natural solution to multi homing

= Smaller routing table - fewer “more specifics”
= Less need for fast convergence

= Better address aggregatibility

= Less routing table churn

= For the operators
= Higher link utilization

= Reduced operational costs
= New services offered to clients

Path Selection & API

= Multiple addresses per endpoint for path diversity
= Signaled at transport layer

= Unmodified sockets API with semantic changes

= bind

« If address is INADDR ANY bind all non-local addresses - multi
homed client apps unchanged (servers too?)

= Allow multiple binds with specific local addresses & ports -
modified apps can control which addresses are used

= getsockopt

= New option to find out connected subflows
= setsockopt

= New option to unbind an address (ugly)

i Multipath TCP Design

= Connection Management

= Sequence Numbers and Acks
= Data Striping

= Security

i Multipath TCP Design

= Sequence Numbers and Acks
= Data Striping

i High Level Design Goal

= Path Isolation - events on one path should
not affect other paths
= Delay variation
= Packet drops
= Failures

x We'd like to avoid

= A congested path stalling other paths
= A failed path stalling other paths

Splitting TCP Functionality

= Single path TCP - loss detection, congestion
detection, flow control, in-order delivery, reliability

= Multipath TCP

= Each path detects losses and congestion

= Isolate response to proper path
=« Reduce traffic on congested paths only

= The connection implements
= In-order delivery - reorder scattered app data
=« Flow control - a single receive window, advertised on all paths

= Reliability - retransmissions may be sent on different
paths

i Sequence Numbers

= \We have:
= Multiple subflows
= Single data sequence space

= What sequence numbers should the subflows
use?
= Data sequence numbers?

= Independent sequence numbers + mapping to
data sequence numbers?

i Unique Sequence Space

= Stripe the data sequence numbers across subflows
= Use data cumulative ack

i Unique Sequence Space

= Stripe the data sequence numbers across subflows
= Use data cumulative ack

ACK:1,3,5
5|3 |1

6|42

ACK: 2,4, 6

i Subflow Signaling

FI513|11|S

*TCP assigns sequence numbers to SYNs and FINs

i Subflow Signaling

*TCP assigns sequence numbers to SYNs and FINs
*Single sequence space can't

Problem: difficult to ack subflow-related messages
Fix: must be acked out of band

i Lost Data Packet

ACK:1,1,1
5|3 |1

64

ACK:1,1,1

Lost Data Packet

ACK:1,1,1
9|3 |1

ACK:1,1,1

Problem: cannot tell which subflows lost data

Fix: use per flow SACK + data cumulative ack

Possible issues if cumulative ack falls behind:
*SACKSs get big
*Receiver has to hold more state

Multiple Sequence Spaces

= Each subflow has its own sequence number space

= Data sequence numbers are mapped on the subflow
that sends them

= Simply insert the data sequence number too

= Use cumulative ack on each subflow
= Subflow seq nos are gapless

= Data cumulative ack, SACK not mandatory
= Could use as optimization
= Or for security

i Multiple Sequence Spaces

ACK: 1,2,3

3,5(12,3 | 1,1

112134516 \123456

3,624 1,2 —

ACK: 1,2,3

Subflow Sequence Number
Data Sequence Number

i Multiple Sequence Spaces (2)

= Advantages

= Cumulative acks for each subflow summarize
connection state succinctly

= Ack SYNs and FINs elegantly - no data mapping
= Each subflow looks like TCP over the wire
= Bandwidth - half of that of a single SACK block

= Disadvantages
= Uses a bit more bw on the forward path
= Retransmissions

i Retransmissions

ACK: 1,1,1

3.5(2.3 | 14

1(2|3]4|516 3,624\»

41121 —

ACK: 1,2,3

i Retransmissions

ACK: 1,1,1

3.5(2.3 | 14

—

1]2]314]5]6 <74.1|36|24[12]—

ACK:1,2,3,4

Gaps in subflow seq nos

= What about the initial subflow (1,1) mapping?
= Could re-map the subflow segno to other data segno
=« Confuses traffic normalizers
= Sender unsure which data arrived when gets ACK
= Or never use the subflow segno again
=« Re-send the initial packet always, or

« Send “get-over-it”’ packets
= One of the above needed for correctness!

Data Striping Policy

= Which subflow gets which data?

= If we have lots of data in the send buffer
= Want max throughput?
« Use large receive window
= Just keep cwnd full at all times for all paths
= Want small packet delay too?
« Delay dictated by reordering time

= Compute expected arrival time for each segment on each
subflow

= Send on min

= If there’s little data in the send buffer
= send on fastest subflow with open cwnd

Data Striping Policy [2]

= Small Flows

= Just send everything on all paths - ensures minimum delay
and robustness

= Redundancy is useful when
= Paths lose packets
= [he connection starts
= Probing bad paths

= Redundancy hurts!

= Useless resending of the same data
= No incentive to use redundancy in normal operation

Related Work

= pTCP - most mature
= Separate seq space
= Each flow congestion controlled, three way handshake

= Minuses:
= Retransmit different data
= Independent TCP flows - not TCP friendly on bneck links
= Ns only evaluation

= mTCP

= Single seq space, single ack path

= RON for multipath
= R-MTP - targets wireless links

= Probes bandwidth periodically and adjusts rate
= CMT - changes to SCTP for multipath

i Summary

= Designing a multipath TCP is not as
straightforward as we initially thought

= Still working on it
= Implementation under way

Connection Management

= Interoperation with TCP => need three way
handshake for initial subflow

= First handshake must signal
= Multipath availability
= |P list for the endpoint - to avoid extra RTTs

= Additional subflows

= Three way handshake for each?
= Probes path characteristics
= |s the same as the initial flow
= Should send data on subsequent SYNs
= Or use signaling on existing subflows?
= Muddy semantics for seq nos, slower

Connection Initiation

= |nitial SYN/SYN ACK special

= |nclude connection token
= |nclude IP address used to connect
= Optionally include IP list for multipath
= By convention, on SYN ACK (multi-homed server)
= Subsequent SYNs include the token

= Used for connection demuxing

= Who opens additional subflows?
= Usually the client

= Mobile Server: pick a reachable client path:

= When SYNs are received, a check is made to see if the
packet’s source address matches the IP provided.

Connection Initiation (2)

= TCP options space is small (40B) and already
crowded: window scale, mss, sack, etc.
= |IPv4 addresses: max 9 addresses
= |[Pv6 addresses: max 2 addresses.

= If client is multihomed, no need to send IP List

s Possible workarounds

= Extend options space using options?
= Needs one RTT in the general case

=« Fast if server is multi-homed, so IP list is sent on SYN ACK
Bad if middle boxes remove options on SYN/ACK

= Send IP lists on additional data packets?

Connection Termination

= Subflows can be destroyed by sending FINs

= If a path fails, how do we terminate the associated
subflow?

= TCP style timeouts - KEEP ALIVE, etc.?
« Keeps state at servers, very slow

= Send metadata on any working subflow, indicating remote
end to drop the subflow?

= Muddies sequence number semantics, introduces security
issues

= When application executes shutdown/close send DATA FIN,
which tells the remote host to close all subflows

= Less flexibility than above. Challenge: reduce delay on path fail

= May need to revoke advertised addresses
= Helps mobile hosts

Security

= Goal: at least the security offered by TCP

= Isolate subflows: subverting one subflow should not affect
the entire connection

= We use

= MACs in every packet - instead of TCP checksum
= Subflow IDs
= ECN nonces

i Message Authentication Codes

= In every packet besides the initial SYN exchange
= Computed on transport header and data
= Also serves as checksum
= Keyed with the tokens
= Other key authentication schemes could be used

= [wo modes
= Cheap: replaces the 16 bit TCP checksum

= Full: complete output of a collision resistant hash function,
such as SHA

Other Security Mechanisms

= Subflow IDs

= Each subflow gets an ID from an always increasing
sequence (4 or 8 bytes)
= Sequences maintained per endpoint
= Included in every SYN besides the initial one

= Prevents against SYN replay attacks

= Use ECN Nonce

= Protects against misbehaving receivers

Security Analysis

Attacker Attack Works Defences
Blind Inject Data No MAC, Seq Nos and subflow
IDs
Replay Data No MAC, Seq Nos and IDs
Eavesdropper | Close Data No Data cumulative ack
Receive Window
Get Over It Yes Expensive packets
Packet
Create Subflows | Yes ?
Close Subflows |Yes | Avoid DATA FIN
Man in the * Yes PKI + interlock protocol

Middle

S|2|4\6 F

ACK: 1,1,1

3,512,3 | DA

\4\.1\3,6,;4

=

A 21 —

| 4

s
(N7 | S

614
R 1,2,0,4

A

ACK:1,1,1,1,1,1

ACK:1,1,1,1,1,1

