

Hidden Action in QoS-aware Overlays

Raul Landa Networks and Services Research Laboratory Department of Electronic and Electrical Engineering University College London

QoS-Aware Overlays

- Any single overlay link experiences intermittent QoS
 - A peer-to-peer aggregate, though, can provide consistent service quality
- Overlays can provide service differentiation through
 - Peer selection
 - Differentiated resource allocation

- Delay-sensitive services require efficient scheduling mechanisms
- However, peers are strategic, and can
 - Advertise false QoS information

- Delay-sensitive services require efficient scheduling mechanisms
- However, peers are strategic, and can
 - Advertise false QoS information
 - Deliver QoS that does not correspond to their advertised QoS

- The actions of the Serving Peer are unobservable to the Client Peer
- In case of unsatisfactory QoS, the Client Peer is unable to distinguish between 2 cases:

- The actions of the Serving Peer are unobservable to the Client Peer
- In case of unsatisfactory QoS, the Client Peer is unable to distinguish between 2 cases:
 - The serving peer exerted insufficient effort
 - The end-to-end network
 conditions were adverse

- The Serving Peer can fail to deliver its advertised service quality, and then blame it on the network
- How can we deal with this Hidden Action scenario?

Hidden Action in Microeconomics

- The owner of the firm delegates it to a manager, which is paid a salary
- The manager can exert low or high effort
- The firm can yield good or bad results
- This creates an **externality** on the owner
- How to give an incentive to the manager to exert **high** effort?

Hidden Action in Network Overlays

- A client peer requests a service from a server peer
- The server can either meet or ignore its advertised effort level
- The client can experience good or bad service quality as a result
- How to give an incentive to the server to meet its advertised effort level?

Service Differentiated Payment

- Service quality is correlated with transaction outcome
 - Higher server effort increases the probability for high service quality, and vice versa
- The client can provide differentiated payments
 - High payment if the service quality is good
 - Low payment if it is not

Elements of the Model

ϕ	ϕ_+	High Server Effort
	ϕ_{-}	Low Server Effort
q	q_+	High Service Quality
	q_{-}	Low Service Quality
ψ	$\psi_{+} = \psi(q_{+})$	High Payment to Server
	$\psi_{-} = \psi(q_{-})$	Low Payment to Server

Transaction Outcomes

 The service quality q is probabilistically dependent on the server effort φ:

p_+	Client experiences high quality (q+), Server devotes high effort (ϕ_+)
$1 - p_+$	Client experiences low quality (q), Server devotes high effort (ϕ_+)
p_{-}	Client experiences high quality (q_+), Server devotes low effort (ϕ)

Utility for the Client

• The expected utility given that $\phi = \phi_+$ is:

Utility for the Server

The expected utilities in terms of server effort are:

Calculating Optimum Payments

- We assume that there is a market-defined "going rate" that gives the server a utility of U_r .
- The optimum payments ψ_+ and ψ_- can be found by solving the following optimization problem:

Maximize: U_c^+ Subject to: $U_s^+ \ge U_r$ (rationality) And: $U_s^+ \ge U_s^-$ (incentive compatibility)

≜UCL

A simple scenario

- Delay-sensitive chunk transfer
- The server peer advertises its effort level using a market system:
 - The maximum time before starting chunk delivery (t_P)
- The client estimates transaction time distributions using this effort level

Modeling Transaction Outcomes

- We model RTT using a shifted Gamma distribution
 Mukherjee (1994)
 - Bolot (1993)
- We use a TCP model as an illustrative example
 - Padhye, Firoiu, Towsley and Kurose (1998)

Transaction Time Distribution

Transaction Time Distribution

- ξ_1 and ξ_2 are functions of:
 - The request and response message sizes
 - The server processing time
 - The number of clients sharing the server upload
 - The IP packet size
 - The packet loss probability
 - The retransmission timeout value

Transaction Outcome Probabilities

• The client defines two deadlines:

t_+	The estimated transaction resolution time if the server actually delivers its advertised effort
t_{-}	The absolute maximum transaction delay that the client is willing to tolerate for the transaction

• We have thus two tiers of service:

- High Quality:
$$D < t_+, q = q_+, \psi = \psi_+$$

- Low Quality: $t_{+} < D < t_{-}, q = q_{-}, \psi = \psi_{-}$

Conclusions

- QoS-aware overlays are susceptible to Hidden Action problems
- The Principal-Agent model can be used to address them
- We require statistical models of the interactions between peer and network behavior

Questions?