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Goal

• Enable for inline, real-time, application-
centric traffic classification
– Based upon a fixed number of packets at the 

start of all flows

• Permit implementation at 10+ Gbit/s



Motivation
• Studies* show that start of flow information 

allows for accurate identification of traffic
• Traditional packet sampling and NetFlow

don’t provide required information
• Heavy-tailed nature of Internet traffic 

allows discarding of significant amount of 
data without processing

* For example:
[1] W. Li and A. W. Moore. A Machine Learning Approach for Efficient Traffic Classication. In 
Proceedings of the IEEE MASCOTS, October 2007.
[2] L. Bernaille, R. Teixeira, and K. Salamatian. Early Application Identication. In Proc. of ACM 
CoNEXT, December 2006.



Method

• Focus upon the sampling of a fixed number of 
packets at the start of all flows

• The scheme consists of two levels

• Per-packet level
– Within a time window of length W, an algorithm based 

on Bloom filters identifies and samples the first N
packets from each flow that occur in that window

• Per-window level
– The memory allocation mechanism finds the 

parameters required in the sampling scheme



Bloom filter refresher

• Simple space-efficient probabilistic data 
structure for representing a set of elements

• Supports the insert() and query() operations

• False positives are possible
• False negatives are not possible

• Implemented with an array of m bits and uses k
hash functions to map elements to [0,…,m-1]
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False positives

• False positives introduce sampling errors
– Packets that should have been sampled get 

discarded
– Discarded are only ever at the end

• Reduce false positives by
– Resetting the filters periodically 

• (at the end of each time window)

– Optimize the memory based upon the traffic



Theory 1
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After n elements have been inserted, the probability that a specific bit is still 0 is

The probability of a false positive is approximated with

that is minimized for

In this application we are interested in the number of false positives that occur as
the Bloom filter is being filled. The expected number of false positives is
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And considering a bank of N Bloom filters

where n is the expected number of elements
that will be inserted within the current window



Theory 2 : Per-window level
• Aim to divide a block of memory M into N

different portions optimally

• The allocation of mj is given by a system of linear 
equations

• However the number of elements that will be 
inserted in the filters, nj, are unknown and have to 
be estimated (in our case using an AR model)
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Theory 3 : Window length

• Given an acceptable level of false 
positives the appropriate value of W can 
be estimated by use of a search algorithm 
as the number of false positives is a 
function of the window size



Theory Summary

• Memory limits number of samples and size 
of Bloom filters

• False positive rate allows near-ideal sizing 
of Bloom filters (for a given amount of 
memory) 

• False positive rate is estimated via AR
• Window length sets rate at which filters 

are reset



Results
• Software implementation
• 12 hours trace from the edge of a research 

institute connected via a full-duplex 1 
Gbit/s link
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Results: false positives
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Results: sampled packets
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Results: sampled bytes

 0

 2

 4

 6

 8

 10

 12

 14

05:30

06:00

06:30

07:00

07:30

08:00

08:30

09:00

09:30

10:00

10:30

11:00

11:30

12:00
S

am
pl

ed
 b

yt
es

 [%
]

Time [s]

ratio sol. KB
ratio ad sol. KB

ideal N=10 W=120



Sampled packets, varying M
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Sampled bytes, varying M
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Effects of false positives

Unsampled bytesUnsampled packetsAffected flowsM

2475934 (0.0004%)6086 (0.0003%)4237 (0.0016%)2048KB

6535918 (0.0010%)15830 (0.0006%)4274 (0.0016%)1576KB

22907748 (0.0037%)58007 (0.0024%)4863 (0.0018%)1024KB

199167936 (0.0323%)517173 (0.0221%)5529 (0.0021%)512KB



Sampling plus flow classifier

• We used a pattern matching flow classifier 
derived from open source tool l7-filter

• Test data contains 2,642,841 flows
• With sampling (N = 10, W = 120, M = 512 KB)

2,636,549 flows are reported
• 6,292 (0.0024%) unreported flows
• 6,021 (0.0023%) flows had classifier error
• Total error is 12,323 (0.0047%) flows



Future Work

• FPGA based hardware implementation

• Flow sampling works

• Focus shifted to improving classification 
(identification) of applications


