
A flow aware packet sampling
mechanism for high speed links

Work done while visiting the
Cambridge University Computer Laboratory

Damien Fay
Computer Laboratory

University of Cambridge

Raffaele Bolla
DIST

University of Genoa

Andrew W. Moore
Computer Laboratory

University of Cambridge

Marco Canini
DIST

University of Genoa

Goal

• Enable for inline, real-time, application-
centric traffic classification
– Based upon a fixed number of packets at the

start of all flows

• Permit implementation at 10+ Gbit/s

Motivation
• Studies* show that start of flow information

allows for accurate identification of traffic
• Traditional packet sampling and NetFlow

don’t provide required information
• Heavy-tailed nature of Internet traffic

allows discarding of significant amount of
data without processing

* For example:
[1] W. Li and A. W. Moore. A Machine Learning Approach for Efficient Traffic Classication. In
Proceedings of the IEEE MASCOTS, October 2007.
[2] L. Bernaille, R. Teixeira, and K. Salamatian. Early Application Identication. In Proc. of ACM
CoNEXT, December 2006.

Method

• Focus upon the sampling of a fixed number of
packets at the start of all flows

• The scheme consists of two levels

• Per-packet level
– Within a time window of length W, an algorithm based

on Bloom filters identifies and samples the first N
packets from each flow that occur in that window

• Per-window level
– The memory allocation mechanism finds the

parameters required in the sampling scheme

Bloom filter refresher

• Simple space-efficient probabilistic data
structure for representing a set of elements

• Supports the insert() and query() operations

• False positives are possible
• False negatives are not possible

• Implemented with an array of m bits and uses k
hash functions to map elements to [0,…,m-1]

Packet
1

Packet
2

Packet
N

Packet
N+1

Per-packet level

Flow Id

(IP tuple)

query()

1 2 N

true

false

insert()

query() false

insert()

query() false

insert()

true true

sample

discard

Id1 Id1

Id1
…

…

Packet
1

Packet
N

Per-packet level

Flow Id

(IP tuple)

query()

1 2 N

true
query() false

insert()

query() false

insert()

true true

sample

discard

Id1 Id1 Id1

Id2

Id2

Packet
2

Packet
N-1

…

…

False positives

• False positives introduce sampling errors
– Packets that should have been sampled get

discarded
– Discarded are only ever at the end

• Reduce false positives by
– Resetting the filters periodically

• (at the end of each time window)

– Optimize the memory based upon the traffic

Theory 1

[]
() ()

∑∑
= =

⋅⋅⋅




























−−=

N

j

n

i

nminm

j

j

jj
jj

m
FE

1 1

)/(2ln)/(2ln

1
11

kkn

m
f





















 −−= 1
11'

kn

m
p 







 −= 1
1'

()
n

m
k ⋅= 2ln

After n elements have been inserted, the probability that a specific bit is still 0 is

The probability of a false positive is approximated with

that is minimized for

In this application we are interested in the number of false positives that occur as
the Bloom filter is being filled. The expected number of false positives is

[]
() () () ()

∑
=

⋅⋅⋅





















 −−=
n

i

nminm

m
FE

1

/2ln/2ln
1

11

And considering a bank of N Bloom filters

where n is the expected number of elements
that will be inserted within the current window

Theory 2 : Per-window level
• Aim to divide a block of memory M into N

different portions optimally

• The allocation of mj is given by a system of linear
equations

• However the number of elements that will be
inserted in the filters, nj, are unknown and have to
be estimated (in our case using an AR model)









=∀=⋅−

=∑
=

Njnm

Mm

jj

N

j
j

K1 0
1

α

)()()1(ˆ)(ˆ
2

1 kiknknkn j

r

i
jijj εθθ +−+−= ∑

=

Theory 3 : Window length

• Given an acceptable level of false
positives the appropriate value of W can
be estimated by use of a search algorithm
as the number of false positives is a
function of the window size

Theory Summary

• Memory limits number of samples and size
of Bloom filters

• False positive rate allows near-ideal sizing
of Bloom filters (for a given amount of
memory)

• False positive rate is estimated via AR
• Window length sets rate at which filters

are reset

Results
• Software implementation
• 12 hours trace from the edge of a research

institute connected via a full-duplex 1
Gbit/s link

 0

 50

 100

 150

 200

 250

23:00

00:00

01:00

02:00

03:00

04:00

05:00

06:00

07:00

08:00

09:00

10:00

11:00

12:00

B
an

dw
id

th
 [M

bi
t/s

]

Time [s]

 0

 50000

 100000

 150000

 200000

 250000

 300000

23:00

00:00

01:00

02:00

03:00

04:00

05:00

06:00

07:00

08:00

09:00

10:00

11:00

12:00

A
ct

iv
e

flo
w

s
[#

]
Time [s]

10
0

10
1

10
2

10
3

10
4

10
5

10
6

10
-7

10
-6

10
-5

10
-4

10
-3

10
-2

10
-1

10
0

Packet count X [#]

P
(#

 p
a

ck
e

ts
 >

 X
)

Packet per flow distribution

Results: false positives

 0

 5000

 10000

 15000

 20000

 25000

 30000

 35000

 40000

05:30

06:00

06:30

07:00

07:30

08:00

08:30

09:00

09:30

10:00

10:30

11:00

11:30

12:00
F

al
se

 p
os

iti
ve

s
[#

]

Time [s]

Actual ratio sol.
Actual ratio ad sol.

Expected fp

Results: sampled packets

 0

 5

 10

 15

 20

 25

 30

 35

05:30

06:00

06:30

07:00

07:30

08:00

08:30

09:00

09:30

10:00

10:30

11:00

11:30

12:00
S

am
pl

ed
 p

ac
ke

ts
 [%

]

Time [s]

ratio sol. KB
ratio ad sol. KB

ideal N=10 W=120

Results: sampled bytes

 0

 2

 4

 6

 8

 10

 12

 14

05:30

06:00

06:30

07:00

07:30

08:00

08:30

09:00

09:30

10:00

10:30

11:00

11:30

12:00
S

am
pl

ed
 b

yt
es

 [%
]

Time [s]

ratio sol. KB
ratio ad sol. KB

ideal N=10 W=120

Sampled packets, varying M

 0

 5

 10

 15

 20

 25

10:45

10:50

10:55

11:00

11:05

11:10

11:15

11:20

11:25

11:30

11:35

11:40

11:45
S

am
pl

ed
 p

ac
ke

ts
 [%

]

Time [s]

512KB
1024KB
1536KB
2048KB

Sampled bytes, varying M

 0

 1

 2

 3

 4

 5

 6

 7

 8

 9

 10

10:45

10:50

10:55

11:00

11:05

11:10

11:15

11:20

11:25

11:30

11:35

11:40

11:45
S

am
pl

ed
 b

yt
es

 [%
]

Time [s]

512KB
1024KB
1536KB
2048KB

Effects of false positives

Unsampled bytesUnsampled packetsAffected flowsM

2475934 (0.0004%)6086 (0.0003%)4237 (0.0016%)2048KB

6535918 (0.0010%)15830 (0.0006%)4274 (0.0016%)1576KB

22907748 (0.0037%)58007 (0.0024%)4863 (0.0018%)1024KB

199167936 (0.0323%)517173 (0.0221%)5529 (0.0021%)512KB

Sampling plus flow classifier

• We used a pattern matching flow classifier
derived from open source tool l7-filter

• Test data contains 2,642,841 flows
• With sampling (N = 10, W = 120, M = 512 KB)

2,636,549 flows are reported
• 6,292 (0.0024%) unreported flows
• 6,021 (0.0023%) flows had classifier error
• Total error is 12,323 (0.0047%) flows

Future Work

• FPGA based hardware implementation

• Flow sampling works

• Focus shifted to improving classification
(identification) of applications

