Exploiting self-reported social networks for routing in delay tolerant networks

Greg Bigwood

(Devan Rehunathan, Martin Bateman, Tristan Henderson, Saleem Bhatti)
School of Computer Science

University of St Andrews

gjb@cs.st-andrews.ac.uk

http://www.cs.st-andrews.ac.uk/~gjb/

Social Networks

- Delay Tolerant Networks: episodic connectivity
- Self-Reported Social Networks: declared social contacts
- Detected Social Networks: built from encounter trace
- Understanding how human contacts affect DTNs:
 - Can we use social networks to improve DTN routing?
 - How does a self-reported social network differ from a detected one?
 - In what ways can social networks give us indicators of how a DTN will behave?

Obtaining Social Networks

- Detected Social Network (DSN):
 - Mobility tracking experiment
 - 27 participants carrying
 Tmote invent devices
 - 79 days of encounter tracking
 - Upload via ZigBee basestations
- DSN ties are encounters

- Self-Reported Social Network (SRSN):
 - Facebook
- SRSN ties are Facebook "friends"

Network Topology

Nodes are more reachable in the DSN

Roles are more clearly defined in SRSN

SRSN Blockmodel

Roles are more clearly defined in SRSN

SRSN Blockmodel

Experiments

Hypotheses

- More messages to be delivered in DSN
 - Higher delivery ratio (messages delivered/ messages sent)
- Less message duplication in SRSN
 - Lower delivery cost (medium accesses/ messages sent)

Configuration

- Simulate message passing application
- Source passes SN with message
- 20 messages per day over whole 79 day trace
- 100 runs
- Analyse (against TTL):
 - Delivery ratio
 - Delivery cost

DTN Delivery Ratio

DSN has only a slightly higher delivery ratio

SRSN Delivery Ratio vs Message TTL

DSN Delivery Ratio vs Message TTL

(p< 0.01) Mean diff in range: 0.023%

DTN Delivery Cost

SRSN has a much lower delivery cost

SRSN Delivery Cost vs Message TTL

DSN Delivery Cost vs Message TTL

Mean diff in range: 46.9

Future work

- How can we bootstrap DTN networks using a mixture of SRSNs and DSNs?
- How can we exploit role equivalence for DTN routing?
- How can applications use social network information?
- What additional experiments do we need to conduct?

Summary

- Social networking analysis techniques can provide us with insights into DTN performance.
- Self-reported and detected social networks are different in terms of structure and role equivalence.
- SRSNs and DSNs have similar performance when used for DTNs, but SRSNs have a much lower cost.

Architecture

Do social networks differ? Structural equivalence

Clusters are more clearly defined in the SRSN

SRSN Cluster Dendrogram

DSN Cluster Dendrogram

Delivery Delay

SRSN Average Delay vs Message TTL

DSN Average Delay vs Message TTL

(p< 0.01)

Mean diff in range: 25 days

Social network analysis

- In order to understand if the detected and self-reported are similar.
- Structural equivalence
 - Nodes with identical ties are structurally equivalent.
- Role equivalence
 - Nodes are role equivalent if the ways in which they relate to the other nodes is the same.