From Community Detection to Group Communication in DTNs

Eiko Yoneki
University of Cambridge Computer Laboratory

Joint work with
Pan Hui
Jon Crowcroft

Outline

Haggle Project:
- Empirical Approach with Real World Human Mobility Traces
- Further Decentralised Community Detection/Inference
- Socio-Aware Overlay for Many-to-Many Communication
 - Support DTN Applications (e.g. Smart Caching for Content Share → Ad Hoc Google)
Human Mobility Traces

- Capture of Human Interaction: Mobility Data
 - MIT Reality Mining: 100 nodes for 9 months (MIT)
 - UCSD: 300 devices for 3 months (UCSD)
 - U. Cambridge: e.g. 40 devices for 11 days (CAM)
 - U. Bath: 8 gateways for 5 days - inferring 7000 devices
 - more...
 - Archive: http://crwdad.cs.dartmouth.edu/data.php

- Proximity Detection by Bluetooth
 - Bluetooth usage (e.g. Bath (UK) 7.5%, Bremen (Germany) 3.5%, San Francisco (USA) 13.5% among all pedestrians)
 - Current Scanning Interval \(\rightarrow\) Coarse-Grained
 - 2 mins IMote for one week and 5m ins phone for one day (power consumption)
 - Importance of Random Interval: When Device is Inquiry mode, it is not discoverable \(\rightarrow\) Sleep a random interval
 - BT inquiry can only happen in 1.28 second intervals. \(4 \times 1.28\) (i.e. 5.12 seconds) gives you more than 90% chance of finding a device. However there is no data available when many devices and many human bodies around.
 - Need Higher Finer-Grained Trace

- Use of Zigbee? No Discovery Function like BT

Uncovering Community Structure

- **Distributed Community Detection in Delay Tolerant Networks**
 SIGCOMM Workshop (MOBIARCH), August, 2007 (to appear)

- Community Structure behind Social Networks in Mobility Traces

- Mobility Trace in Form of Weighted Graph \(\rightarrow\) Multi-Graphs

- Use of Community Detection Algorithms from Complex Network Studies
 - SIMPLE
 - K-CLIQUE
 - Modularity

- Use Contact Duration and Frequency (\(N_o\) of Contacts) for Defining Node Pair Relationship
Classification of Pairs

Pair Classification:

I: **Community**
 High Contact No - Longer Duration:
II: **Familiar Stranger**
 High Contact No - Short Duration:
III: **Stranger**
 Low Contact No - Short Duration:
IV: **Friend**
 Low Contact No - High Duration:

Mobile Phone w/Human and Tracking Station

- Tracking Station – High Visibility but No Friends
- Mobile Device – No Familiar Stranger

Human Mobile Node

Stational Node
Community Definition ≈ Membership

- Current Approach: Contact Duration and Frequency

- Needs Various Aspects:
 - Temporal Information
 - e.g. Minimum duration within certain time windows
 - e.g. Specific time of the day
 - e.g. Matching contact interval sequence
 - e.g. Suppress night/day time
 - e.g. Large connected cluster within certain time window
 - Spatial Information
 - e.g. Specific location (and time)
 - Network Locality
 - Ego-centric network – only surrounded nodes
 - Socio-centric – whole network
 - Static Community vs Dynamic Community (Surrounding common interests under specific condition)
 - e.g. Same affiliation vs queuing to see the show
Visualisation Demo 2 – Time-Dependent Detection

http://www.cl.cam.ac.uk/~ey204/Haggle/Vis/mobilitySlide.html

K-CLIQUE with MIT Data

- With Certain Threshold (e.g., 250K seconds contact duration), Detection with 1/3 of time shows comparable result to centralised approach

- Add message passing to improve community detection
 - Similarity improves $0.87 \rightarrow 0.88$ (1/3 position forcing to interact betweenness nodes)
K-Clique and Simple with UCSD Data

Time-Dependent Networks: Distance of Pair Nodes

Average Hop Counts:
- MIT 1.6
- UCSD 2.2
- CAM 1.2

Cluster Coefficient:
Probability of B connects C, when A connects B and A connects C
- MIT 0.44
- UCSD 0.41
- CAM 0.66
Overlay over Communities for Publish/Subscribe

- A Socio-Aware Overlay for Multi-Point Asynchronous Communication in Delay Tolerant Networks ACM/IEEE MSWiM, October, 2007 (to appear)

- Subscription Propagation during Community Detection
- Closeness Centrality Nodes Creates Overlay
 - Closeness Centrality = 1.0 (MIT, UCSD, CAM)
 - Multiple Centrality Nodes Coexist \rightarrow Resource/Load Sharing

Publication State

- Publication State:
 - A: Publication Created
 - B: Publication gets first Contact
 - C: Subscriber Received Publication

- Haggle – Interactive Interface + Multiple Connectivity
 - Alert to connect to direct connection media
 - Stop at stationary nodes nearby...
 - Controlling/Accelerating Information Flow

<table>
<thead>
<tr>
<th># Pub/Sub</th>
<th>Average Hops</th>
<th>Contact to Sub</th>
<th>Pub to Sub</th>
<th>Latency</th>
<th>Undelivered</th>
<th>Total Hops</th>
</tr>
</thead>
<tbody>
<tr>
<td>1000/100</td>
<td>1.28</td>
<td>5.6 units</td>
<td>631.8 units</td>
<td>5.26 min</td>
<td>261(26%)</td>
<td>6431</td>
</tr>
<tr>
<td>500/50</td>
<td>1.34</td>
<td>4.6 units</td>
<td>828.5 units</td>
<td>6.94 min</td>
<td>242(24%)</td>
<td>1975</td>
</tr>
<tr>
<td>200/20</td>
<td>1.32</td>
<td>4.5 units</td>
<td>631.4 units</td>
<td>6.93 min</td>
<td>115(11%)</td>
<td>204</td>
</tr>
<tr>
<td>1000/100C</td>
<td>1.36</td>
<td>2.7 units</td>
<td>440.4 units</td>
<td>3.75 min</td>
<td>38(3%)</td>
<td>-</td>
</tr>
</tbody>
</table>

B to C A to C
Latency of Publication

- Most disseminations have short durations

![Graph showing latency of publication](image1)

Latency within Network

- Once publication has a contact with any node, latency of reaching subscriber is low
- Subscribers 70-80 show longer durations
 - Experiments: 1000 Publications and 100 Subscriptions
 - Possibly Distant from Centrality Node

![Graph showing latency within network](image2)
Publish/Subscribe within Community

- Intra-Community Pub/Sub shows Low Latency
 - Mix Community: Publishers and Subscribers evenly spread across Communities
 - Within Community: 90% of publishers and subscribers reside in same community

Future Work: Recall Membership

- Topics may often map to community: Sharing same interest forms community
- Not Yet Membership Management: Membership refresh, expiration, permanent/temporary membership
- Group Communication in pervasive computing tends to be smaller and dynamic
 - Selective dissemination based on contents
 - Extend publish/subscribe semantics
Thank You!

eiko.yoneki@cl.cam.ac.uk

http://www.cl.cam.ac.uk/~ey204