Autonomous Multi-Agents: In Search and Rescue operations

Panteha Saeedi
University College London
Search & Rescue Robots

Application:
Natural or man-made disasters
 • Earthquake
 • Terrorist attack

Motivation:
These robots will assist rescue team with:
 • Exploration
 • Site evaluation
 • Human(victim) Detection
Methodological Approach

- **Optimization**: Searches for a solution for a given function

Objective functions:
- **Efficiency**
 - Time and effort needed to search the area comprehensively.
- **Robustness**
 - Ability to avoid destruction and communication.
- **Fairness**
 - Ability to find all targets independent of position.

- **Adaptation**: Searches for a function behind given solution
Autonomous Robots

There are able to:

- Protect themselves (e.g: avoid hazards)
- Make decisions (e.g: how to avoid obstacles!?)
- Accomplish task objectives (e.g: detect victims based on their heat signature)

All without human assistance

Methodologies:

- *Random Slope Search*
- *Spiral surge Search*
- *Sweep Curve Search*
Random Slope Search
Area Coverage for RSS
Relationship between Steps and Area Coverage
Structured Random Slope Search
Random vs. Structure
Spiral Surge Searching Algorithm

Perimeter
SSS vs. RSS

![Graph comparing SSS and RSS with steps and resolution area]
Sweep Curve Searching Algorithm

Forming a perimeter
Ad-hoc network
Vector-Valued function

Area has been covered!
Conclusion:

<table>
<thead>
<tr>
<th></th>
<th>Area Resolution</th>
<th>Obstacles</th>
<th>Required Time</th>
</tr>
</thead>
<tbody>
<tr>
<td>RSS</td>
<td>✓</td>
<td>✓</td>
<td>✗</td>
</tr>
<tr>
<td>SSR</td>
<td>✓</td>
<td>✗</td>
<td>✓</td>
</tr>
<tr>
<td>SCS</td>
<td>✗</td>
<td>✓</td>
<td>✓</td>
</tr>
</tbody>
</table>
Masters & Slaves

- Dividing the search area between general independent units. Larger robots span larger gaps while smaller gaps will be searched by slaves.