
Dynamic Replication and Partitioning

Costin Raiciu
University College London

Joint work with
Mark Handley, David S. Rosenblum



2

Motivation: Web Search

• Search engines
– Create an index of the web
– Queries consult the index to find relevant 

documents
– The documents are then ordered (e.g. Page Rank)

• The index is huge: a few TB
– Must be partitioned to fit into memory
– Must be replicated to increase query throughput 

and system availability



3

Query

Google Web Search (Barroso et. al)

Cluster 1 Cluster 2 Cluster 3

Index split in Shards

Merge and order results



4

Big Picture: Distributed Rendez-Vous

Index 
Shard

Query

Average Replication Level R=5
Hop Count H=3

Load Balancer
Overlay Node



5

Distributed Rendez Vous is important

• Many other applications use it
– Online Filtering
– Distributed databases

• Combines replication and partitioning
– Increasing replication (R) increases availability, but has high cost 

for storing the index
– Increasing the forwarding hops (H) creates high bandwidth cost for 

transient objects
– Tradeoff: R·H ≥ #nodes



6

The Problem

• Who chooses the number of clusters? Depends on:
– Frequencies and sizes of index and queries
– Bandwidth constraints
– Memory constraints
– Number of nodes

• R varies with time!

How can we adjust the Replication Rate
in distributed rendez-vous?



7

Obvious approach

• Google architecture
– Replication tied to network structure
– Increase replication level 

• Destroy cluster, add the nodes to the other clusters

– Issues
• Temporarily reduces the capacity of the network

• Not simple to implement

• Google solution: buy more hardware

Cluster 1 Cluster 2 Cluster 3

X



8

On average, each query meets each index shard 
once

To increase the replication level, each node 
creates 1 new replica for active queries

A randomized implementation

Index 
Shard

Query N=15
R=5
H=3



9

Our solution: ROAR

• Rendez-Vous On A Ring
– Similar in spirit to Random
– But with deterministic properties
– Does not tie network structure to replication level



10

ROAR Overview

Replication Level: 5

Index 
Shard
Query

• Nodes on a Chord ring
• ID space virtually split in R 

intervals
• Replicate

– Hash and store

– Forward to equivalent
node in next interval

• Route
– Uniformly choose interval 

and direction

– Route to all nodes in that 
interval

0 max



11

ROAR Analysis

• Equal spacing is important 
– When R increases, it ensures that no 2 replicas are in the same 

interval
– Stable state: if R is constant enough time, equivalent nodes have 

equivalent content
• Useful for fault tolerance

– When R changes:
• Stability is maintained if R is doubled of halved
• Otherwise, not stable: wait for objects to expire



12

Increasing Replication

Replication Level: 5 -> 6
0 max



13

Increasing Replication (2)

• Observation. When replication level is R, we can route at 
any level R’≤R.

• ROAR can route while changing replication levels
– Wait until all nodes in interval reach new replication
– Begin routing at new replication level

• When is the new replication level reached?
– Compute persistent object count at replication level R and R+1

• When approximately equal, safe to switch to new routing.

– Count is piggybacked on queries - very small cost



14

Fault Tolerance

X

Stable state

Query



15

Fault Tolerance

Not in stable state

X

Query



16

Comparison

Yes35%
miss probabilityYesRV Guaranteed?

O(I·R/N)
or 1

O(I·R/N)1Bw Cost on Node 
Failure

II~2·IBw for R = R+1

No
25%

redundant RV
probability

NoRV Redundant?

ROARRandomGoogle

• Bandwidth scarce system
– R = O(√N)

– I = # total size of index



17

Comparison (2)

0

0.5

1

1.5

2

2.5

3

3.5

4

0 20000 40000 60000 80000 100000 120000
Number of Nodes

Equi-Bandwidth Usage

• 1% permanent failures per year
– Commercial data: 5% failures in 1st year

– Transient failures tolerated with stable state

ROAR better

Google better



18

Summary

• Distributed rendez-vous is an important problem in 
distributed computing
– Changing R is a requirement for optimal solutions

• ROAR - simple algorithm
– Distributed in spirit

• No need for external load balancing
• Can run on deployed structured overlays

– Achieves reconfiguration without changing network structure
– In stable state as good as Google
– When reconfigurations are often, does better



19

References

• Web Search for a Planet: the Google Cluster 
Architecture - Barroso et. al


