Imperial College

Building an Internet-Scale
Publish/Subscribe System

Ian Rose Mema Roussopoulos
Rohan Murty Matt Welsh
Jonathan Ledlie

Imperial College Harvard
London University

Distributed Software Engineering (DSE) Group

prp@doc.ic.ac.uk
MSN’07 - Cosener’s House — July 2007

Motivation

Explosive growth of the “blogosphere” and other forms of
RSS-based web content

L® Technorati

Weblogs Tracked: March 2003 - March 2007

=72M Weblogs tracked
in March 2007 (>120K =

% : created new every day) _

ae) [64M
50 f
40

30 __ O'-

Blogs Tracked (Millions)

20|

10? .o O

How can we provide an efficient, convenient way for people
to access content of interest in near-real time? 2

Content-Based Publish/Subscribe for RSS

Challenges

Scalability

— How can we efficiently support large numbers of RSS
feeds and users?

Latency
— How do we ensure rapid update detection?

Provisioning
— Can we automatically provision our resources?

Network Locality
— Can we exploit network locality to improve performance?

4

Talk Outline

Architecture Overview
— Services: Crawler, Filter, Reflector

Provisioning Approach
Locality-Aware Feed Assignment
Evaluation

Conclusions

General Architecture

<football and .
=»| <Harvard or - web server

<Yale and loss>>=>

- Reflectors
N\
- - } Filters

- - H } Crawlers

}RSSFeeds

Crawler Service

1. Retrieve RSS feeds via
HTTP

2. Hash full document &
compare to last value

3. Split document into
individual articles;
hash each article &
compare to last value

4. Send each new article to
A-Encoding downstream filters

[Last-Mod

Filter Service

1. Receive subscriptions
from reflectors and
index for fast
subscription matching
[Fabret’01]

2. Receive articles from
crawlers and match
each against all
subscriptions

3. Send articles that
match >1 subscription
to host reflectors

Reflector Service

1. Receive subscriptions
from web front-end;
create article “hit
queue” for each

2. Receive articles from
filters; add to hit queues
of matching
subscriptions

3. When polled by client,
return articles in hit
gueue as RSS feed

Provisioning

Cobra services in networked data centers

Iterative, greedy, heuristic to gutomatically determine
services required for specific performance targets

Constraints
BW

CFPU
Memory

Performance
Targets

Feeds
Subs
Crawl Rate

R R ®

Provisioner

Algorithm

ﬁ Service
Models of Resource Instantiation
Usage (Analytical & Graph
Empirical)

10

Provisioning Algorithm

Algorithm:
1. Begin with minimal topology (3 services)

2. Identify service violation (in-BW, out-BW, CPU, memory)

3. Eliminate violation by “"decomposing” service into
multiple replicas, distributing load across them

4. Continue until no violations remain

11

Provisioning: Example

BW: 25 Mbps (subs)

Memory: 1 GB.
CPU: 4x
Subscriptions:

Feeds: 600K

2M (subs)

Done!

300K 300K (feeds)

12

Locality-Aware Feed Assignment

Focus on crawler-feed locality

Offline latency estimates
between crawlers and web
servers

— Based on DNS indirection
[King021]

— Cluster feeds to “nearby”
crawlers

18% median reduction in crawl

time crawler #1
@ crawler #2
A unassigned RSS feed

lGummadi et al., King: Estimating Latency

between Arbitrary Internet End Hosts 3

Evaluation Methodology

Synthetic evaluation on Emulab
— Synthetic user queries based on Yahoo! query data
— Trace of 102,446 real feeds from syndic8.com
— Scalability in terms of resource/bandwidth consumption

Live deployment on PlanetLab
— Benefit of intelligent crawling
— Locality-aware crawler-to-feed assignment
— Intra-network latency

14

Scalability Evaluation: BW

Four workloads evaluated on A ! Crawer u
. it t
Emulab w/ synthetic feeds: Reflector in B
5
Subs 1M | 10M | 20M | 40M -
Feeds 100K | 1M |500K | 250K | & 4
Total Nodes |3 |57 |51 |57 <
Crawlers 1 1 1 1 % s
Filters 1 28 |25 |28 g ,
Reflectors 1 28 25 28
1 m
Bandwidth usage scales well 0
] 1M subs 20M subs
W|th feeds and users 100K feeds 500k feeds
40M subs 10M subs
250k feeds 1M feeds

15

Conclusions

Provisioning important but often overlooked
— Provisioning by hand is hard
— Simple provisioning algorithm with room for improvement

Reproducible evaluation on PlanetLab hard
— Emulab better for controlled experiments
— Hard to find good workloads for synthetic benchmarks

Locality on the Internet matters
— But network measurements can be expensive

16

Thank you

Any Questions?

Department of Computing
Imperial College London
http://www.doc.ic.ac.uk/~prp
prp@doc.ic.ac.uk

17

Backup

18

Daily Posting Volume LS Technorati

2,500,000 lerasiiezboliah o, U5 Popaistion
1.4 Million Posts/Day Confict TRl i M (il
(30 day avg. as of March 6, 2007) W. VA Coal Pukedum Photos of
Mina on Antonella Baroa
58,000+ f.'IDEtS per hour Accident Rep. Cynthia Capitat Hil “Released”
2,000,000 1 Ben. Biden Calls
: . Iraqi * ARl Sen. Obama “clean”
Constitutianal
Ta
Lomgon
Bombings
1,500,000 \
Dieeptnroat
Revesled
1,000,000 —— Termi Schiavo Dies i —f—
ﬂay 1ru:|lE|n Grean
500,000

Aug '04 Feb '05 Aug '05 Feb '06 Aug '06 Feb '07

19
Source:

Current Approaches

RSS Readers (Thunderbird)

— topic-based (URL), inefficient polling model
Topic Aggregators (Technorati)

— topic-based (pre-defined categories)
Blog Search Sites (Google Blog Search)

— closed architectures, unknown scalability and efficiency of
resource usage

20

Related Work

Traditional distributed pub/sub systems, e.qg. Siena (Univ.
of Colorado):

— Address decentralized event matching and distribution.
— Typically do not (directly) address overlay provisioning.

— Often do not interoperate well with existing web
infrastructure.

Corona (Cornell) is an RSS-specific pub/sub system
— topic-based (subscribe to URLSs)

— Attempts to minimize both polling load on content servers
(feeds) and update detection delay.

— Does not specifically address scalability, in terms of feeds
or subscriptions.

21

Benefit of Intelligent Crawling

One crawl of all 102,446

feeds over 15 minutes, N
using 4 crawlers. R
Bandwidth usage e —
recorded for varying BNl
filtering levels 3
: - i
Crawlers able to reduce g, S N
bandwidth usage by .
99.8% through
intelligent crawling 21 P
1 - Hash .. Article
(0.38 Mb/s) Hash
N 1 (0.02Mbis)

22

Provisioner-Predicted Scaling

1000 ———r—rrrrm ——r———rrrrm
| |Crawlers =K~ | | Constraints:
- | Filters —+— | | 100 Mbps BW
| | Reflectors E 4x CPU
1 GB Memory
100 ¢
9 [
g System is expected to
@ scale reasonably well
@ despite permissive user
N query model. -
g XK
=
1EB o o . o
1 10 100 1000 10000

Number of Feeds (Thousands); Subscriptions are 10x Feeds

23

CDF

Intra-Network Latency

T

90th percentile [
latency = 52.4s

10M subs (357K subs/node) ——

Intra-network latency (seconds)

20M subs (800K subs/node) ¢ _
1M subs (1M subs/node) -3~
A 40M subs (1.4M subs/node) [
0 10 20 30 40 50 60 70

Total user latency =
crawl latency +
polling latency +
intra-network latency

Intra-network
latencies largely
dominated by
crawling and polling
latencies

24

Fraction of IP addresses crawled (CDF)

Locality-Aware Feed Assignment

0.8

0.6

0.4

0.2

x R xJoxk X

* 481 Unique |IP addresses from
34 092 live feeds

*11 PlanetLab hosts

times

*18% (median) reduction in crawl -

andom assignment X

Lacalig aware assignment +
0.6

0 0.2 0.4
Time to download full feed (seconds)

0.8

25

Future Work

Many open directions:
— Evaluating real user subscriptions & behavior

— More sophisticated filtering techniques (e.g. rank by
relevance, proximity of query words in article)

— Subscription clustering on reflectors
— How to discover new feeds & blogs

— Adapting Cobra to a peer-to-peer setting may also be
possible

