
Peter R. Pietzuch
prp@doc.ic.ac.uk

Building an Internet-Scale
Publish/Subscribe System

Ian Rose Mema Roussopoulos
Peter Pietzuch Rohan Murty Matt Welsh

Jonathan Ledlie

Imperial College Harvard
London University

Distributed Software Engineering (DSE) Group

prp@doc.ic.ac.uk
MSN’07 - Cosener’s House – July 2007

Motivation

2

Explosive growth of the “blogosphere” and other forms of
RSS-based web content

How can we provide an efficient, convenient way for people
to access content of interest in near-real time?

Content-Based Publish/Subscribe for RSS

3

Challenges

Scalability

– How can we efficiently support large numbers of RSS
feeds and users?

Latency

– How do we ensure rapid update detection?

Provisioning

– Can we automatically provision our resources?

Network Locality

– Can we exploit network locality to improve performance?

4

Talk Outline

Architecture Overview

– Services: Crawler, Filter, Reflector

Provisioning Approach

Locality-Aware Feed Assignment

Evaluation

Conclusions

5

General Architecture

6

Crawler Service

1. Retrieve RSS feeds via
HTTP

2. Hash full document &
compare to last value

3. Split document into
individual articles;
hash each article &
compare to last value

4. Send each new article to
downstream filters

7

Filter Service

1. Receive subscriptions
from reflectors and
index for fast
subscription matching
[Fabret’01]

2. Receive articles from
crawlers and match
each against all
subscriptions

3. Send articles that
match >1 subscription
to host reflectors

8

Reflector Service

1. Receive subscriptions
from web front-end;
create article “hit
queue” for each

2. Receive articles from
filters; add to hit queues
of matching
subscriptions

3. When polled by client,
return articles in hit
queue as RSS feed

9

Provisioning

Cobra services in networked data centers

Iterative, greedy, heuristic to automatically determine
services required for specific performance targets

10

Provisioning Algorithm

Algorithm:

1. Begin with minimal topology (3 services)

2. Identify service violation (in-BW, out-BW, CPU, memory)

3. Eliminate violation by “decomposing” service into
multiple replicas, distributing load across them

4. Continue until no violations remain

11

Provisioning: Example

BW: 25 Mbps

Memory: 1 GB

CPU: 4x

Subscriptions: 6M

Feeds: 600K

12

Locality-Aware Feed Assignment

Focus on crawler-feed locality

Offline latency estimates
between crawlers and web
servers

– Based on DNS indirection
[King021]

– Cluster feeds to “nearby”
crawlers

18% median reduction in crawl
time

13

1Gummadi et al., King: Estimating Latency
between Arbitrary Internet End Hosts

Evaluation Methodology

Synthetic evaluation on EmuLab

– Synthetic user queries based on Yahoo! query data

– Trace of 102,446 real feeds from syndic8.com

– Scalability in terms of resource/bandwidth consumption

Live deployment on PlanetLab

– Benefit of intelligent crawling

– Locality-aware crawler-to-feed assignment

– Intra-network latency

14

Scalability Evaluation: BW

Subs 1M 10M 20M 40M

Feeds 100K 1M 500K 250K

Total Nodes 3 57 51 57

Crawlers 1 1 1 1

Filters 1 28 25 28

Reflectors 1 28 25 28

Four workloads evaluated on
Emulab w/ synthetic feeds:

Bandwidth usage scales well
with feeds and users

15

Conclusions

Provisioning important but often overlooked

– Provisioning by hand is hard

– Simple provisioning algorithm with room for improvement

Reproducible evaluation on PlanetLab hard

– Emulab better for controlled experiments

– Hard to find good workloads for synthetic benchmarks

Locality on the Internet matters

– But network measurements can be expensive

16

Thank you

Any Questions?

Peter Pietzuch
Department of Computing

Imperial College London

http://www.doc.ic.ac.uk/~prp

prp@doc.ic.ac.uk

17

Backup

18

Source:
http://www.sifry.com/alerts/archives/000493.html

19

Current Approaches

RSS Readers (Thunderbird)

– topic-based (URL), inefficient polling model

Topic Aggregators (Technorati)

– topic-based (pre-defined categories)

Blog Search Sites (Google Blog Search)

– closed architectures, unknown scalability and efficiency of
resource usage

20

Related Work

Traditional distributed pub/sub systems, e.g. Siena (Univ.
of Colorado):

– Address decentralized event matching and distribution.

– Typically do not (directly) address overlay provisioning.

– Often do not interoperate well with existing web
infrastructure.

Corona (Cornell) is an RSS-specific pub/sub system

– topic-based (subscribe to URLs)

– Attempts to minimize both polling load on content servers
(feeds) and update detection delay.

– Does not specifically address scalability, in terms of feeds
or subscriptions.

21

Benefit of Intelligent Crawling

22

One crawl of all 102,446
feeds over 15 minutes,
using 4 crawlers.
Bandwidth usage
recorded for varying
filtering levels

Crawlers able to reduce
bandwidth usage by
99.8% through
intelligent crawling

Provisioner-Predicted Scaling

23

Intra-Network Latency

24

Total user latency =
crawl latency +
polling latency +
intra-network latency

Intra-network
latencies largely
dominated by
crawling and polling
latencies

Locality-Aware Feed Assignment

25

Future Work

Many open directions:

– Evaluating real user subscriptions & behavior

– More sophisticated filtering techniques (e.g. rank by
relevance, proximity of query words in article)

– Subscription clustering on reflectors

– How to discover new feeds & blogs

– Adapting Cobra to a peer-to-peer setting may also be
possible

