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Motivation

o Spatial models are important for many applications, but for
studying connectivity models can be extremely useful

« Understanding connectivity patterns between humans is
Important for:
— Design and testing of opportunistic communication protocols

— Design and testing of peer-to-peer applications (file sharing, etc.)
among mobile devices

— Bandwidth provisioning



Related Work

o Study of WLAN connectivity (measurements) [Baker 2000,
Balachandran et alii 2002, Balazinska 2003, Henderson et
alit 2004]

 Human connectivity & Pocket Switched Networks
[Chaintreau et alii 2006]

o Software engineering testing community [Rutherford et alii
2006, Wang et alii 2007]

 Emergence of power laws [Karagiannis et alii 2007]
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First Step: Deriving a Colocation Model

« Derivation of colocation patterns given residence time in a
particular colocation of an individual

o Two assumptions to simplify the mathematical treatment of

the problem in first instance:

— Users’ behaviours are independent: the behaviours of a user does
not depend on other users’ behaviours

— Users’ behaviours are uniform: all users have the same behaviours



Understanding Connectivity
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The Connectivity Model .




Generation of the Synthetic Connectivity
Traces

* From the mathematical model of location we can extract
the colocation distribution

* Either residence time or colocation patterns can be used
 Inputs of the tool are

— Number of nodes

— Graph of the potential contacts

— Distribution of contacts time (p.(t))

— Distribution of inter-contacts time (p,(t))



Graph of the Potential Contacts (aka the
underlying Social Network)

o Synthetic network characterised by a structure
extracted from measurements

— Reality Mining Data (MIT) -> Normal Distribution
— Dartmouth College Campus -> Scale free

e ...or areal one can be directly used
 Model allows for the variation
of the structure of the network

Credit: Marta Gonzales



Contact Graphs

« The Graph of the Potential Contacts is the graph
representing all the contacts that take place during the
simulated interval

 From this graph we extract the Instant Snapshot Contact
Graph, a time-varying graph of the links that are active at
a certain time t:

— Alink is activated according to the distribution of the contacts time
and the inter-contacts time
« pc(t)) is used to assign a duration to the ON time of each edge
* pc(t) is used to assign a duration to the OFF time of each edge



QuickTime™ and a
Animation decompressor
are needed to see this picture.

Synthetic traces from Reality Mining data Credit: Dimitrios Moustakas



Case study: Parameters from the Dartmouth
Traces

 Dataset from 01/04/2004 to 30/06/2004

 Measurements from APs in the Dartmouth College
campus

e 13889 users
178 different locations

e Subset considered 19/04/2004 to 19/05/2004 (academic
term) from 9am to 5pm



Distribution of Colocation Time in Academic
Building 22
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Distribution are Power Laws (in a Certain

Range)

[Location —kx —krc —kpr
Academic Building 22 | -1.448 | -1.745 | -1.062
Residential Building 20 | -1.303 | -1.909 | -1.047
All campus (averaged) | -1.281 | -1.553 | -1.064




Synthetic vs Real Traces: Contact Time
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Synthetic vs Real Traces: Inter-contacts Time
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Protocol Performance Testing

Four protocols:

— Epidemic

— Flooding (without store&forward)

— Context-aware Adaptive Routing (CAR)
— Random Walk

200 nodes
1000 messages in 8 simulated hours

Default parameters taken from Dartmouth traces
distribution



Performance of the Protocols with Dartmouth

Traces
Flooding | Epidemic CAR | Random
Delivery | 18.76% 62.7% | 49.95 % | 28.52 %
Delay [s] | 2636.20 | 2636.30 | 4192.15 | 954.77
Overhead | 3276463 | 397153 150516 | 158658




Impact of Inter-contacts Time Distribution:

Delivery Ratio vs Inter-contacts time
Exponent
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Impact of Inter-contacts Time Distribution:
Average Delay vs Inter-contacts Time

Exponent
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Impact of Colocation Distribution: Delivery

Ratio vs Colocation Exponent
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Impact of Colocation Distribution: Average

Delay vs Colocation Exponent
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Current Research Directions

e Improvement of the current model

— Relaxation of the assumption that users’ behaviours are
iIndependent

— Relaxation of the assumption that users’ behaviours are uniform
— Clustering

o Study of the emergence of power-laws distributions in
human connectivity patterns

o Socially-aware traffic model
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