Connectivity with Multihop Relaying for WiFi-based Vehicular Internet Access

Mahesh K. Marina

School of Informatics The University of Edinburgh <u>mmarina@inf.ed.ac.uk</u> <u>http://homepages.inf.ed.ac.uk/mmarina/</u>

Joint work with Yi Yang and Prof. Rajive Bagrodia (UCLA)

Vehicular Internet Access

- Increasing need for staying connected on the move as people spending more time travelling
- Many varied applications [Gerla et al, WICON'06]:
 - Web browsing, e-mail, messaging, p2p
 - Multimedia apps: stored audio/video streaming, live streaming (e.g., IPTV), interactive (e.g., VoIP)
 - Road traffic management and safety, location-aware apps, ...
- Cellular-based access: nearly ubiquitous, but poor price/performance ratio
 - Low and variable data rates (esp. at driving speeds) and occasional communication blackouts [Qureshi & Guttag, MobiSys'05]
 - Can alleviate the above via aggregating multiple cellular channels and exploiting diversity, e.g., MAR (mobile access router) [Rodriguez et al, MobiSys'04] and on-board WiFi service on GNER trains
 - Costly (e.g., \$60/mo. service with Verizon in US for ~200Kbps download speeds)

WiFi-based Vehicular Internet Access

- Widespread deployment of WiFi (802.11) access points (APs) esp. in urban and sub-urban areas
 - Hotspots, homes, community/municipal mesh networks, university campuses, enterprises, ...
- Higher data rate compared to cellular at least by an order of magnitude (up to 54Mbps) and potentially free
- But medium range (several tens to few hundreds of meters)
- <u>Key challenge</u>: ensuring continuous and seamless connectivity in dynamic vehicular environments

WiFi-based Vehicular Internet Access (2)

- Internet connectivity depends on several factors:
 - AP density and distribution
 - Vehicle density, distribution and speed
 - Communication range of nodes (APs and vehicles)
 - dependent on radio hardware, regulations and parameter settings (e.g., transmit power, rate)
- Recent measurement studies [Balakrishnan et al, Mobicom'06; Diot et al, WMCSA'06; Ott & Kutscher, Infocom'04]
 - Show feasibility of WiFi-based vehicular Internet access
 - Observed short connection durations (few tens of seconds), so suggest such access only useful for applications tolerating intermittent connectivity
 - But only focus on direct communication between vehicles and roadside APs, did not consider inter-vehicular communication

School of Informatics

tute for Computing ems Architecture

Multihop Relaying

- "A vehicle outside the coverage of any AP depends on other vehicles to relay its packets using intervehicular communication, possibly over multiple hops"
 - Can exploit high density of vehicles and resulting greater connectivity opportunities

Multihop Relaying (2)

- Similar strategy found to be beneficial in other contexts
 - Heterogeneous cellular and WiFi networks [Lu et al, Mobicom'03]
 - Mesh, multihop wireless LANs [Banerjee et al, Infocom'04] and home wireless networks [Papagiannaki et al, Infocom'06]
 - Internet connectivity for mobile ad hoc networks (MANETs) [Ruiz et al, IEEE COMM'05]
 - > Use random mobility models
- Other related work:
 - Research on inter-vehicular communication or vehicular ad hoc networks (VANETs) focusing on routing, measurements, etc e.g., [Singh et al, TridentCom'06]

> Do not consider communication with fixed infrastructure

 Analysis of connectivity properties in hybrid ad hoc networks [Dousse et al, Infocom'02]

> Institute for Computing Systems Architecture

Focus on connectivity between sparsely distributed <u>fixed</u> wireless nodes with wired infrastructure
School of Informatics

Our Work

- <u>Goal</u>: study potential improvement in Internet connectivity with multihop relaying in real-world vehicular environments relative to default "direct access" strategy
 - Also study the impact of communication range
- Metrics
 - Spatial connectivity (at a given time): fraction of vehicles connected
 - Temporal connectivity: duration of (dis-)connection
- Use real AP location data and detailed & realistic vehicular mobility trace for a city scenario (viz. Zurich, Switzerland)

Representative Results

				3-4>	(ii	mprovement
Average (median)		1hop		2hop		3hop
connection duration (s)						
(15dBm, 11Mbps)		66.65 (37)	12	24.45 (70) 🤇	4	206.24 (166)
(15dBm, 2Mbps)	98.04 (06)		188.37 (152)		1	252.49 (210)
(15dBm, 1Mbps)	1	26.73 (84)	32	20.26 (250)		Reduced
(19dBm, 1Mbps)	212.36 (195)		372.51 (272)			disconnection
						periods
Average (median)		1hop		2hop		3hop
disconnection duration ((S)					3
(15dBm, 11Mbps)		61.23 (25)	36.86 (6)	<	22.42 (1)
(15dBm, 2Mbps)		59. 40 (19.3	4)	29.36 (1)		6.74 (0.69)
(15dBm, 1Mbps)		33.14 (8)		6.33 (0.49))	1.87 (0.38)
(19dBm, 1Mbps)		26.56 (0.9)	1)	2.56 (0.37)	0.49 (0.35)

8

Results Summary

- Multihop relaying gives substantial gains in connection duration relative to direct access (as much as 400%)
 - Further gains together with increased communication range (~460%)
- Relay paths with few hops are sufficient to realize most of the gain
- Differences between spatial and temporal connectivity behaviors:
 - Multihop relaying vs. direct access with increased communication range
 - Effect of vehicle density

Paper appeared in IEEE Infocom 2007 Workshop on MObile networking for Vehicular Environments (MOVE'07)

Issues for Future Work

- Data transfer performance
 - Impact of multiple access interference and fading
- Mobility management and AP configuration protocols
- Efficient and resilient data forwarding protocols

School of Informatics

ute for Computing