

Terminus: Towards a Network-Level Deployable Architecture Against Distributed Denial-of-Service Attacks

Felipe Huici and Mark Handley Networks Research Group Department of Computer Science

Overview

- Terminus architecture
- Protecting the architecture
- Performance results

Terminus Architecture

No Magic Bullet

- Need minimal IP-level changes that can raise the bar for the attacker
- Difficult deployment issues:
 - Can't change the hosts
 - Too expensive to change network core
- These point towards reactive solutions at edge ISPs

Architecture Introduction

- General idea
 - Identify attack traffic at destination
 - Request that traffic be filtered
 - Block attack traffic at source ISP's filtering box
- Pretty obvious...
 - Architecture's novelty lies in meeting these criteria robustly and with minimum mechanism.

Terminus Architecture

Traffic Marking

- Problem
 - Need to know origin of attack packets
 - Must send filter request to the right place
 - IP source address cannot be trusted
 - Can be spoofed
- Solve by adding a "true-source" bit to packets
 - Only Terminus ISPs with ingress filtering can set bit

[±]UCL

Preventing True-Source Bit Spoofing

• Edge router at Terminus ISP connected to legacy ISP unsets this bit for all packets

Protecting the Architecture

- 1. Attackers in legacy ISPs
- 2. Malicious filtering requests
- 3. Spoofed traffic triggering filtering requests
- 4. Reflection attacks

[•]UCL

Problem 1: Defending Against Attackers at Legacy ISPs

- During initial stages, legacy ISPs will be the norm
- Use true-source bit to prioritize traffic at the destination ISP's peering routers
 - Implement true-source bit as a diffserv code point

Problem 2: Filtering Requests

- Where to send request?
 - Digitally-signed p2p mechanism used to distribute source-to-BM mappings
- Where can it come from?
 - Same mechanism distributes signed destination-to-FM mappings
 - BM checks if FM allowed to request filter for destination
- BM must validate source of a filtering request
 - Cannot rely on TS=1 since path may be asymmetric
 - Simple nonce exchange validates FM

[•]UCL

Problem 3: Triggering Requests Through Spoofing

Scenario: attacker is in a legacy ISP that allows spoofing Solution: do not issue filtering request if TS = 0

Problem 4: Reflection Attacks

- In a reflection attack
 - The attacker spoofs requests using victim's address
 - The requests are sent to third-party servers (reflectors)
 - Response flood overwhelms victim
- For most part, Terminus unaffected, except when:
 - Reflector is in a Terminus ISP
 - Terminus path between reflector and victim

[•]UCL

Reflection Attacks

Performance Results

Border Patrol Parallelism

= interface

16

filter

cpu1

[≜]UCL

Summary

- Presented Terminus, a deployable architecture against large DDoS that uses *minimum* mechanism
- Robust against attack
- Performs well even on cheap hardware

Terminus: God of boundaries

Paper under submission, URL: http://www.cs.ucl.ac.uk/staff/F.Huici/publications/terminus-lsad.pdf

≜UCL

Additional Slides

Motivation

- Majority of operators spend more resources on DDoS than any other security threat
- Attack firepower increasing
- Majority of ISPs mitigate attacks by filtering all traffic to victim
- Attacks happen in the thousands per day

Sources: Symantec Internet Security Threat Report XI and Arbour Worldwide Infrastructure Security Report 2006

Triggering Requests Through Spoofing

Scenario 2: Attacker is in same Terminus ISP as victim, but behind different BP

Triggering Requests Through Spoofing

Scenario 3: Attacker is behind same BP as victim

Control Plane Performance

- Filter manager
 - 75,000 requests/sec
 - Biggest botnets about 1,500,000 hosts, filter in 20 secs
- Border manager
 - 87,000 requests/sec
- Border patrol
 - 354,000 requests/sec (in batches of 100 filters)

Setup

- Testbed
 - Non-blocking Force10 E1200 switch
- Computers
 - Inexpensive 1U servers
 - Two dual-core processors at 2.66GHz
 - Two dual-port Gigabit Ethernet cards
- Software
 - Linux 2.6
 - Click modular router for forwarding plane
 - C++ for control plane

Protecting Terminus' Components

- Border and egress patrols
 - Not externally visible
- Border manager
 - Off fast-path
 - Low return on investment for attacker
- Filter manager
 - Off fast-path
 - Only has to handle incoming nonces, which have priority at edge

BP Forwarding Plane – HashFilter

BP Forwarding Plane – HashFilter

• All filters hash to same chain

• All packets fully traverse chain before being forwarded

[•]UCL

BP Forwarding Plane – IngressFilter

• Packets force look-up against all prefixes before being forwarded