Terminus: Towards a Network-Level Deployable Architecture Against Distributed Denial-of-Service Attacks

Felipe Huici and Mark Handley
Networks Research Group
Department of Computer Science
Overview

• Terminus architecture
• Protecting the architecture
• Performance results
Terminus Architecture
No Magic Bullet

• Need minimal IP-level changes that can raise the bar for the attacker

• Difficult deployment issues:
 – Can’t change the hosts
 – Too expensive to change network core

• These point towards reactive solutions at edge ISPs
Architecture Introduction

• General idea
 – Identify attack traffic at destination
 – Request that traffic be filtered
 – Block attack traffic at source ISP’s filtering box

• Pretty obvious…
 – Architecture’s novelty lies in meeting these criteria robustly and with minimum mechanism.
Terminus Architecture

IDS = intrusion detection
BP = border patrol
BM = border manager
FM = filter manager
Traffic Marking

• Problem
 – Need to know origin of attack packets
 • Must send filter request to the right place
 – IP source address cannot be trusted
 • Can be spoofed

• Solve by adding a “true-source” bit to packets
 – Only Terminus ISPs with ingress filtering can set bit
Preventing True-Source Bit Spoofing

- Edge router at Terminus ISP connected to legacy ISP unsets this bit for all packets
Protecting the Architecture

1. Attackers in legacy ISPs
2. Malicious filtering requests
3. Spoofed traffic triggering filtering requests
4. Reflection attacks
Problem 1: Defending Against Attackers at Legacy ISPs

- During initial stages, legacy ISPs will be the norm
- Use true-source bit to prioritize traffic at the destination ISP’s peering routers
 - Implement true-source bit as a diffserv code point
Problem 2: Filtering Requests

• Where to send request?
 – Digitally-signed p2p mechanism used to distribute source-to-BM mappings

• Where can it come from?
 – Same mechanism distributes signed destination-to-FM mappings
 – BM checks if FM allowed to request filter for destination

• BM must validate source of a filtering request
 – Cannot rely on TS=1 since path may be asymmetric
 – Simple nonce exchange validates FM
Problem 3: Triggering Requests Through Spoofing

Scenario: attacker is in a legacy ISP that allows spoofing

Solution: do not issue filtering request if $TS = 0$
Problem 4: Reflection Attacks

• In a reflection attack
 – The attacker spoofs requests using victim’s address
 – The requests are sent to third-party servers (reflectors)
 – Response flood overwhelms victim
• For most part, Terminus unaffected, except when:
 – Reflector is in a Terminus ISP
 – Terminus path between reflector and victim
Reflection Attacks

Legacy ISP A

Terminus ISP B

Terminus ISP C

Terminus ISP E

ISP D

A

S

TS: 0
SRC: S

TS: 1
SRC: S

TS: 0

TS: 1
Performance Results
Border Patrol Parallelism

![Graph showing throughput vs. chain length for SMP and UP border patrols.]

- **SMP border patrol**
 - cpu0
 - filter
 - cpu1

- **UP border patrol**
 - cpu
 - filter

= interface

64-byte packets
Summary

• Presented Terminus, a deployable architecture against large DDoS that uses *minimum* mechanism
• Robust against attack
• Performs well even on cheap hardware

Terminus: God of boundaries

Additional Slides
Motivation

- Majority of operators spend more resources on DDoS than any other security threat
- Attack firepower increasing
- Majority of ISPs mitigate attacks by filtering all traffic to victim
- Attacks happen in the thousands per day

Scenario 2: Attacker is in same Terminus ISP as victim, but behind different BP
Triggering Requests Through Spoofing

Scenario 3: Attacker is behind same BP as victim
Control Plane Performance

- Filter manager
 - 75,000 requests/sec
 - Biggest botnets about 1,500,000 hosts, filter in 20 secs
- Border manager
 - 87,000 requests/sec
- Border patrol
 - 354,000 requests/sec (in batches of 100 filters)
Setup

• Testbed
 – Non-blocking Force10 E1200 switch

• Computers
 – Inexpensive 1U servers
 – Two dual-core processors at 2.66GHz
 – Two dual-port Gigabit Ethernet cards

• Software
 – Linux 2.6
 – Click modular router for forwarding plane
 – C++ for control plane
Protecting Terminus’ Components

• Border and egress patrols
 – Not externally visible

• Border manager
 – Off fast-path
 – Low return on investment for attacker

• Filter manager
 – Off fast-path
 – Only has to handle incoming nonces, which have priority at edge
BP Forwarding Plane – HashFilter

UP border patrol

IF = Ingress Filter
HF = Hash Filter
= interface

SMP border patrol

cpu0

IF
HF

cpu1

IF
HF

Throughput (Mbps)

Chain Length

0 2 4 6 8 10

0 200 400 600 800 1000 1200

SMP border patrol

UP border patrol

= interface
BP Forwarding Plane – HashFilter

- All filters hash to same chain
- All packets fully traverse chain before being forwarded
BP Forwarding Plane – IngressFilter

- Packets force look-up against all prefixes before being forwarded