
www.kent.ac.uk

Optimising the resource
utilisation in high-speed
network intrusion
detection systems.

Gerald Tripp

2

Network intrusion detection

• Network intrusion detection systems are provided to
detect the presence of various security attacks.
• This could be a virus or an attack that takes advantage of

some form of weakness in the system.

• Typically operates by searching for various patterns or
strings within each network packet.

• Difficult for software to keep up with traffic rate for high
speed networks.
• Can build custom hardware for this within a Field

Programmable Gate Array (FPGA)
• Implement string matching using an 'automata' based design

3

FPGA based implementation

• One common method is to implement an automata as
a series of comparator, flip flops and gates.
• Good resource utilisation
• But: need to rebuild the design if we change the search strings

• Can use a table based automata implementation.
• Dynamically update-able at run time.
• Use internal memory to avoid pipeline delays to external RAM
• But: limited numbers of Block RAM primitives within FPGAs.

4

Using Logic ...

• We can instead use logic cells (LUTs – Look Up
Tables) as small blocks of memory.
• But: they are rather small (16-bits each in Xilinx FPGAs)
• However, there are plenty of them ...
• The basic single LUT memory is also single port …

• We can however use these as shift registers ...
• SR16 primitive – implemented as a single LUT.
• Use the shift data operation to load them with information
• Use a selective shift out port to read out particular bits

5

Standard shift register: SR16

• The 'programmable length' facility enables Q to output
the shift register bit selected by A

D Q15

Q

CE

A

Shift in
and enable

Shift
out

clock

6

Generic Memory Block of size: 2N x W bits

• Instantiate number of shift registers as required.

• Link shift registers together inside the memory block

• Serial load data and enable, in and out
• Daisy chain to link memory blocks together for loading.

N D

Serial
load in

A

SDI
SEI

SDO
SEO

Serial
load out

Clock

W Data out Address

7

Basic string matching engine.

Generic design:

• A – bus width of compressed input
• S – number of bits in state variable
• N – number of different match strings

automata

Data in

8 Acompress
N

state
decoderS

Match
vector

out

8

Basic Matching 'engine'.

• Use a compacted table for the automata based on “row
displacement with state marking”
• This is a traditional parser technique.
• New variable P: address bus width into main automata table

• Use a similar technique for the compression system.
• Variable CL: address bus width into main compression table

• Build state decoder as two stages:
• First: compress current state into a value (width K bits)

indicating one of the terminal states or that its a non-terminal.
• Secondly: decode this into a match vector.

9

Determining resource utilisation

• Now have a completely parametrised design ...
• Build a rough (mathematical) model of resource utilisation for

an 'matching engine' dependent on these parameters.

• For each valid set of parameters:
• Process a set of Intrusion Detection rules to see how many

'engines' are needed
• Determine the approximate per search byte resource

utilisation.

• Pick the most likely candidates and plot a graph
• Pick an optimal candidate and build an FPGA design for it ...

Search engine resource utilisation

3.6

3.8

4.0

4.2

4.4

4.6

4.8

5.0

0 5 10 15 20 25 30

Maximum strings per engine (N)

LU
Ts

/s
ea

rc
h

by
te

C:6,6,6,6
C:6,6,7,7
C:7,6,7,7
C:7,7,7,7
C:7,7,8,8
C:8,6,7,7
C:8,7,8,8

Parameter
key:

CL,A,S,P

()⎡ ⎤1log2 += NK

11

Results – Target device: Xilinx XC2VP7-7

Parameters: CL=7, A=6, S=7, P=7, K=4, N=15
• Max. of 15 search strings / engine (average of about 10 to 11)

• Resources for each engine:
• LUTs: 410 out of 9856 (4% of XC2VP7)
• Can probably fit about 215 engines into a larger XC2VP100

• i.e. Search for around 2200 strings in parallel

• Search rate: 1.2 Gbps
• Independent of search strings or input data.

• Tested by simulation as a VHDL model …

12

Conclusions & Further work

• Flexible VHDL model for a string matching system
• Using just FPGA LUTs.
• Dynamically update-able at run time.

• Only byte at a time string matching so far
• Can look at incorporating in existing work with multi-byte input

matching systems and regular expression matching.

• This design uses just LUT primitives ...
• Can look at how this might be used in conjunction with the

larger BRAM primitives for more optimal implementations.

