UNIVERSITY OF KENT

Optimising the resource
utilisation in high-speed
network intrusion
detection systems.

Gerald Tripp

www.kent.ac.uk

Network intrusion detection

* Network intrusion detection systems are provided to
detect the presence of various security attacks.

« This could be a virus or an attack that takes advantage of
some form of weakness in the system.

« Typically operates by searching for various patterns or
strings within each network packet.

 Difficult for software to keep up with traffic rate for high
speed networks.

 Can build custom hardware for this within a Field
Programmable Gate Array (FPGA)

* Implement string matching using an ‘automata' based design

UNIVERSITY OF KENT

FPGA based implementation

« One common method is to implement an automata as
a series of comparator, flip flops and gates.
« Good resource utilisation
. need to rebuild the design if we change the search strings

« (Can use atable based automata implementation.
« Dynamically update-able at run time.
e Use internal memory to avoid pipeline delays to external RAM
. limited numbers of Block RAM primitives within FPGAs.

UNIVERSITY OF KENT

Using Logic ...

 We can instead use logic cells (LUTs — Look Up
Tables) as small blocks of memory.
« But: they are rather small (16-bits each in Xilinx FPGAS)
 However, there are plenty of them ...
 The basic single LUT memory is also single port ...

 We can however use these as shift registers ...
e SR16 primitive — implemented as a single LUT.
« Use the shift data operation to load them with information
e Use a selective shift out port to read out particular bits

UNIVERSITY OF KENT

Standard shift register. SR16

Shift in
and enable

 The 'programmable length' facility enables Q to output
the shift register bit selected by A

UNIVERSITY OF KENT

Generic Memory Block of size: 2N x W bits

* Instantiate number of shift registers as required.
« Link shift registers together inside the memory block

e Serial load data and enable, in and out
Daisy chain to link memory blocks together for loading.

Address Data out

Serial SDI SDO Serial
load in SElI SEO load out

Clock

UNIVERSITY OF KENT

Basic string matching engine.

Generic design:

Data In
state

A — bus width of compressed input
S — number of bits in state variable
N — number of different match strings

UNIVERSITY OF KENT

Basic Matching ‘engine’.

 Use a compacted table for the automata based on “row
displacement with state marking”

« This is a traditional parser technique.
e New variable P: address bus width into main automata table

e Use a similar technique for the compression system.
« Variable CL: address bus width into main compression table

« Build state decoder as two stages:

* First: compress current state into a value (width K bits)
Indicating one of the terminal states or that its a non-terminal.

o Secondly: decode this into a match vector.

UNIVERSITY OF KENT

Determining resource utilisation

 Now have a completely parametrised design ...

e Build a rough (mathematical) model of resource utilisation for
an 'matching engine' dependent on these parameters.

 For each valid set of parameters:

* Process a set of Intrusion Detection rules to see how many
‘engines' are needed

e Determine the approximate per search byte resource
utilisation.

* Pick the most likely candidates and plot a graph
* Pick an optimal candidate and build an FPGA design for it ...

UNIVERSITY OF KENT

Search engine resource utilisation

Parameter
key:

CL,ASP

——C:6,6,6,6
—=u—C:6,6,7,7

C.7,6,7,7

C:7,7,7,7
—x—C:7,7,8,8
—e—C:8,6,7,7
——C:8,7,8,8

]
—
>
@)
e
&)
| -
®
<b)
n
~~
n
l_
)
-l

10 15 20 25 30
Maximum strings per engine (N) K= |_|0g2(N +1)—|

Results — Target device: Xilinx XC2VP7-7

Parameters: CL=7, A=6, S=7, P=7, K=4, N=15
 Max. of 15 search strings / engine (average of about 10 to 11)

* Resources for each engine:
e LUTs: 410 out of 9856 (4% of XC2VP7)

« Can probably fit about 215 engines into a larger XC2VP100
* |.e. Search for around 2200 strings in parallel

o Searchrate: 1.2 Gbps
* Independent of search strings or input data.

 Tested by simulation as a VHDL model ...
UNIVERSITY OF KENT

Conclusions & Further work

* Flexible VHDL model for a string matching system
e Using just FPGA LUTs.
« Dynamically update-able at run time.

* Only byte at a time string matching so far

e Can look at incorporating in existing work with multi-byte input
matching systems and regular expression matching.

e This design uses just LUT primitives ...

e Can look at how this might be used in conjunction with the
larger BRAM primitives for more optimal implementations.

UNIVERSITY OF KENT

