Wavelet Compression of Network Measurements

Konstantinos Kyriakopoulos David Parish High Speed Networks Group Loughborough University

> MSE Coseners 13-14th July 2006

Overview

The problem we try to solve
How Wavelets have been used
Reasons for choosing Wavelets
Achieving compression
Simulation - Practical Results

Monitor UKLight
Archive and store huge amounts of data
Compress data but ...
Keep important features of signals

Benefits

Useful for researchers, administrators
Examine network's behavior
Store statistics describing network
Look back in history

Wavelets and Computer Networks

- In general: Detect Network Performance Problems
- WT on traffic rate: Infer RTT

WT on one-way delay: Detect shared congestion

Why Wavelets ?

Scales and performs local analysis

Finite nature: Better analysis non-stationary signals

Better Signal Energy compaction

Compression can be varied

Achieving compression

Wavelet analysis is not a compression tool
 Transforms data to the Wavelet domain
 WT coefficients (coefs.) more eligible to compression

Small coefs.:

Attributed to noise of signal, i.e. detail characteristics of signal.

Small percentage of signals total energy
 Can be discarded with no significant loss in quality

Large coefs.:

Represent important characteristics
Should be kept to preserve quality

Threshold selection

Most research focused on signal de-noising Need a Threshold selection depending on the value of coefs. \oslash Calculate σ , μ of non-zero coefs. \odot If $\sigma > \mu$, T=2 μ \odot else T= μ - σ

Delay Reconstruction Results

Delay Reconstruction Results

Delay signals: WT vs bzip2

Data rate: WT vs bzip2

More control over threshold

Statest can detect changes in signals

WT in CoMo

Full algorithm implemented in CoMo CoMo: Passive Monitoring platform Monitors network links at high speeds Replies to Real Time queries
 Compresses CoMo measurements When queried, decompresses data

Traffic Module Results

Compared two versions of Traffic module
Both modules count bytes/sec + timestamp
Only one had WT compression
Independent of link's speed
After 9 days, C.R. = 38.5:1

Thank you Konstantinos Kyriakopoulos