
Algebraic metalanguages
for routing policy specification

Alexander Gurney
Computer Laboratory, University of Cambridge

Multi-Service Networks 2006
Cosener’s House, Abingdon, UK

The Metarouting Idea

• A language for policy

• Build up complex protocol
descriptions, as simple algebras
combined in known ways

• Susceptible to proof

• Suitable for implementation

• One language, many meanings

Meanwhile, in the world of mathematics

• The shortest path problem, with numbers (Dijkstra, Bellman / Ford, Moore /
Shannon; and related works back to at least 1871)

• Generalised shortest paths (Gondran / Minoux; Carré; Berge; ...)

• All kinds of fun algebra: monoids, semirings, semilattices and other ordered
structures, actions, representations

• “If the algebra has property X then we can use algorithm Y to find an optimal
solution” for various values of “X”, “Y”, and “optimal”

Model I: Path algebra

• Monoid (M, +, 0): closed, associative, identity

• Semiring (S, ∧, ⊕, ⊤, 0): two monoids (S, ∧, ⊤), (S, ⊕, 0) on the same set

• Path algebra: has commutativity, distributivity, idempotence (a + a = a)

• Examples: (N∞, min, +, ∞, 0), (℘(A), ∩, ∪, A, ∅), (R+, max, min, 0, ∞)

Model I: Path algebra

• Monoid (M, +, 0): closed, associative, identity

• Semiring (S, ∧, ⊕, ⊤, 0): two monoids (S, ∧, ⊤), (S, ⊕, 0) on the same set

• Path algebra: has commutativity, distributivity, idempotence (a + a = a)

• Examples: (N∞, min, +, ∞, 0), (℘(A), ∩, ∪, A, ∅), (R+, max, min, 0, ∞)

0
2 4 6 4

5
2

19

Model I: Path algebra

• Monoid (M, +, 0): closed, associative, identity

• Semiring (S, ∧, ⊕, ⊤, 0): two monoids (S, ∧, ⊤), (S, ⊕, 0) on the same set

• Path algebra: has commutativity, distributivity, idempotence (a + a = a)

• Examples: (N∞, min, +, ∞, 0), (℘(A), ∩, ∪, A, ∅), (R+, max, min, 0, ∞)

0
2 4 6 4

5
2

19

0+2+4+6+4

Model I: Path algebra

• Monoid (M, +, 0): closed, associative, identity

• Semiring (S, ∧, ⊕, ⊤, 0): two monoids (S, ∧, ⊤), (S, ⊕, 0) on the same set

• Path algebra: has commutativity, distributivity, idempotence (a + a = a)

• Examples: (N∞, min, +, ∞, 0), (℘(A), ∩, ∪, A, ∅), (R+, max, min, 0, ∞)

0
2 4 6 4

5
2

19

16

Model I: Path algebra

• Monoid (M, +, 0): closed, associative, identity

• Semiring (S, ∧, ⊕, ⊤, 0): two monoids (S, ∧, ⊤), (S, ⊕, 0) on the same set

• Path algebra: has commutativity, distributivity, idempotence (a + a = a)

• Examples: (N∞, min, +, ∞, 0), (℘(A), ∩, ∪, A, ∅), (R+, max, min, 0, ∞)

0
2 4 6 4

5
2

19

0+5+2+6+4
16

Model I: Path algebra

• Monoid (M, +, 0): closed, associative, identity

• Semiring (S, ∧, ⊕, ⊤, 0): two monoids (S, ∧, ⊤), (S, ⊕, 0) on the same set

• Path algebra: has commutativity, distributivity, idempotence (a + a = a)

• Examples: (N∞, min, +, ∞, 0), (℘(A), ∩, ∪, A, ∅), (R+, max, min, 0, ∞)

0
2 4 6 4

5
2

19

16
17

Model I: Path algebra

• Monoid (M, +, 0): closed, associative, identity

• Semiring (S, ∧, ⊕, ⊤, 0): two monoids (S, ∧, ⊤), (S, ⊕, 0) on the same set

• Path algebra: has commutativity, distributivity, idempotence (a + a = a)

• Examples: (N∞, min, +, ∞, 0), (℘(A), ∩, ∪, A, ∅), (R+, max, min, 0, ∞)

0
2 4 6 4

5
2

19 0+5+9+1

16
17

Model I: Path algebra

• Monoid (M, +, 0): closed, associative, identity

• Semiring (S, ∧, ⊕, ⊤, 0): two monoids (S, ∧, ⊤), (S, ⊕, 0) on the same set

• Path algebra: has commutativity, distributivity, idempotence (a + a = a)

• Examples: (N∞, min, +, ∞, 0), (℘(A), ∩, ∪, A, ∅), (R+, max, min, 0, ∞)

0
2 4 6 4

5
2

19

16
17

15

Model I: Path algebra

• Monoid (M, +, 0): closed, associative, identity

• Semiring (S, ∧, ⊕, ⊤, 0): two monoids (S, ∧, ⊤), (S, ⊕, 0) on the same set

• Path algebra: has commutativity, distributivity, idempotence (a + a = a)

• Examples: (N∞, min, +, ∞, 0), (℘(A), ∩, ∪, A, ∅), (R+, max, min, 0, ∞)

0
2 4 6 4

5
2

19

16
17

15

Model I: Path algebra

• Monoid (M, +, 0): closed, associative, identity

• Semiring (S, ∧, ⊕, ⊤, 0): two monoids (S, ∧, ⊤), (S, ⊕, 0) on the same set

• Path algebra: has commutativity, distributivity, idempotence (a + a = a)

• Examples: (N∞, min, +, ∞, 0), (℘(A), ∩, ∪, A, ∅), (R+, max, min, 0, ∞)

Model I: Path algebra

• Monoid (M, +, 0): closed, associative, identity

• Semiring (S, ∧, ⊕, ⊤, 0): two monoids (S, ∧, ⊤), (S, ⊕, 0) on the same set

• Path algebra: has commutativity, distributivity, idempotence (a + a = a)

• Examples: (N∞, min, +, ∞, 0), (℘(A), ∩, ∪, A, ∅), (R+, max, min, 0, ∞)

∞
2 4 5.8 4.5

5
2.3

19.1

Model I: Path algebra

• Monoid (M, +, 0): closed, associative, identity

• Semiring (S, ∧, ⊕, ⊤, 0): two monoids (S, ∧, ⊤), (S, ⊕, 0) on the same set

• Path algebra: has commutativity, distributivity, idempotence (a + a = a)

• Examples: (N∞, min, +, ∞, 0), (℘(A), ∩, ∪, A, ∅), (R+, max, min, 0, ∞)

∞
2 4 5.8 4.5

5
2.3

19.1

{2, 4, 5.8, 4.5}

Model I: Path algebra

• Monoid (M, +, 0): closed, associative, identity

• Semiring (S, ∧, ⊕, ⊤, 0): two monoids (S, ∧, ⊤), (S, ⊕, 0) on the same set

• Path algebra: has commutativity, distributivity, idempotence (a + a = a)

• Examples: (N∞, min, +, ∞, 0), (℘(A), ∩, ∪, A, ∅), (R+, max, min, 0, ∞)

∞
2 4 5.8 4.5

5
2.3

19.1

2

Model I: Path algebra

• Monoid (M, +, 0): closed, associative, identity

• Semiring (S, ∧, ⊕, ⊤, 0): two monoids (S, ∧, ⊤), (S, ⊕, 0) on the same set

• Path algebra: has commutativity, distributivity, idempotence (a + a = a)

• Examples: (N∞, min, +, ∞, 0), (℘(A), ∩, ∪, A, ∅), (R+, max, min, 0, ∞)

∞
2 4 5.8 4.5

5
2.3

19.1

{5, 2.3, 5.8, 4.5}
2

Model I: Path algebra

• Monoid (M, +, 0): closed, associative, identity

• Semiring (S, ∧, ⊕, ⊤, 0): two monoids (S, ∧, ⊤), (S, ⊕, 0) on the same set

• Path algebra: has commutativity, distributivity, idempotence (a + a = a)

• Examples: (N∞, min, +, ∞, 0), (℘(A), ∩, ∪, A, ∅), (R+, max, min, 0, ∞)

∞
2 4 5.8 4.5

5
2.3

19.1

2
2.3

Model I: Path algebra

• Monoid (M, +, 0): closed, associative, identity

• Semiring (S, ∧, ⊕, ⊤, 0): two monoids (S, ∧, ⊤), (S, ⊕, 0) on the same set

• Path algebra: has commutativity, distributivity, idempotence (a + a = a)

• Examples: (N∞, min, +, ∞, 0), (℘(A), ∩, ∪, A, ∅), (R+, max, min, 0, ∞)

∞
2 4 5.8 4.5

5
2.3

19.1 {5, 9.1, 1}

2
2.3

Model I: Path algebra

• Monoid (M, +, 0): closed, associative, identity

• Semiring (S, ∧, ⊕, ⊤, 0): two monoids (S, ∧, ⊤), (S, ⊕, 0) on the same set

• Path algebra: has commutativity, distributivity, idempotence (a + a = a)

• Examples: (N∞, min, +, ∞, 0), (℘(A), ∩, ∪, A, ∅), (R+, max, min, 0, ∞)

∞
2 4 5.8 4.5

5
2.3

19.1

2
2.3

1

Model I: Path algebra

• Monoid (M, +, 0): closed, associative, identity

• Semiring (S, ∧, ⊕, ⊤, 0): two monoids (S, ∧, ⊤), (S, ⊕, 0) on the same set

• Path algebra: has commutativity, distributivity, idempotence (a + a = a)

• Examples: (N∞, min, +, ∞, 0), (℘(A), ∩, ∪, A, ∅), (R+, max, min, 0, ∞)

∞
2 4 5.8 4.5

5
2.3

19.1

2
2.3

1

Combining operations

• D = (N∞, min, +, ∞, 0), B = (R+, max, min, 0, ∞)

• D × B = (N∞ × R+, ∧, ⊕, (∞, 0), (0, ∞)), where

(d, b) ∧ (e, c) = (min(d, e), max(b, c))

(d, b) ⊕ (e, c) = (d + e, min(b, c))

• D ×lex B = (N∞ × R+, ∧lex, ⊕, (∞, 0), (0, ∞)), where

(d, b) ∧lex (e, c) = (d, b) if d < e or [d = e and b > c]; (b, c) otherwise

⊕ is as before

We obtain < from min by defining a ≤ b iff a = min(a, b)

Dijkstra’s algorithm and the prefix property

• To get the right answer out of Dijkstra, we need each prefix of a shortest path
to also be a shortest path

• In semiring language: a = a ∧ b ⇒ (m + a) = (m + a) ∧ (m + b), for all a, b, m

• This is the case when we have distributivity: (m + a) ∧ (m + b) = m + (a ∧ b)

a

b
m

Property preservation

• If A and B are distributive, then so is A × B; but A ×lex B may not be

• So if we have a whole load of distributive semirings A, B, C, and D, then we
know we can run Dijkstra correctly on A × B × C × D

• Similar rules exist for other properties and other operations – so we can
deduce facts like “we can’t do Dijkstra, but we can do Bellman-Ford”

Expressiveness issues

• Consider the ASPATH attribute of BGP (a list of numbers; shorter lists are
preferred, but we don’t care about the contents). How can we encode this?

• Surely S must be the set of lists, and ⊕ is the append operation...

...and we can say by convention that we will only put one-element lists on
the arcs...

...but what should ∧ be for two lists of equal length? It has to be

something different from either operand, so maybe we can have a
special “equal length” symbol, “E”. But then what is E ∧ a ? We actually

need an Ek for each k. And we can extend ⊕ to work on these, too.

Expressiveness issues

• We now have a consistent
algebra

• But we’ve lost touch with reality

• E1 = E1 ∧ [1], so E1 < [1]

• Ek tells us nothing about the
actual path. And we prefer these
to concrete lists!

...

lists of length 6

E6

lists of length 5

E5

...

better

Multiple equivalent paths

• S now consists of sets of lists (where all lists in a set are of the same length)

• A ⊕ B = { append(a, b) | a ∈ A, b ∈ B }; identity { [] }

• A ∧ B = { x ∈ A ∪ B | ∀y ∈ A ∪ B: |x| ≤ |y| }; identity ∅

• Only ever put { [n] } on the arcs

• Is this really ‘natural’? Can it be derived automatically?

Model II: Routing algebras

• (S, ≤) where ≤ is a preference relation (reflexive, transitive, total)

• Label set L; application function ⊕ : L × S → S

• Very general (even more so if we extend ≤ to a preorder)

We can encode ASPATH very easily, along with our other examples

• Price to pay: not so algebraically nice

Model III: Functional path algebras

• A hybrid of (S, ⊕, ∧, 0, 1) and (S, ≤, L, ⊕)

• (M, F) where M is a commutative monoid and F a set of functions M → M

• Elements of F go on the arcs

• If everything in F is a homomorphism, then these look a lot like path algebras.
But we do not require this.

Embed routing algebra in functional path algebra

• (S, ≤, L, ⊕) → ((℘≤ (S), ∪≤), FL), where

℘≤ (S) = { A ⊆ S | min≤ (S) = S }

A ∪≤ B = min≤ (A ∪ B)

FL = { λ S . min≤ { l ⊕ s | s ∈ S } | l in L }

• Multipath routing with a partial order, but secretly based on a far more general
order

• Arc labels are better than before – they seem like single elements

The ASPATH example

• Routing algebra is (S, ≤, L, ⊕) where

S = lists of AS numbers (and no list has the same number twice), plus E

≤ orders lists by length; E is topmost

L = AS numbers

n ⊕ ns = n:ns (unless n is in ns or n:ns is too long, when we return E)

The ASPATH example

• As a functional path algebra: ((℘≤ (S), ∪≤), FL)

Each element of ℘≤ (S) is a set of lists; all lists have the same length (and
there is also an element {E})

p ∪≤ q is the set of shortest lists in p ∪ q

so { [2, 1], [5, 1] } ∪≤ { [6, 1] } = { [2, 1], [5, 1], [6, 1] };

and { [2, 1] } ∪≤ { [4] } = { [4] }

Each element of F is a function fk, adding k to each list in the given set

f6 { [1, 4], [3, 6] } = min { [6, 1, 4], E } = { [6, 1, 4] }

Canonical constructions

• Direct and lexical products

• Parallel sum A || B: a + b = E

• Layered sum A ◁ B: a + b = a

• Local preference: F = { λx.a | a }

• Origin preference: F = { id }

• many more

The metalanguage

• Borrow syntax from maths (but this will definitely be syntax)

• Expressions E ::= atom | unary(E) | (E binary E)

unary ::= LP, OP, FLIP, FLATTEN, ...

binary ::= ×, ×lex, ||, ◁, ...

• For each kind of structure, an evaluation function, appropriately typed

written as (S, ≤)〚 ... 〛= ...

• Notational convenience: (A1, ... , Ak)〚 ... 〛= (A1〚 ... 〛, ... , Ak〚 ... 〛)

Sample rules

• ≤〚 A || B 〛= ≤〚A〛∪ ≤〚B〛

• (M, +)〚 A ◁ B 〛= (M〚A〛∪ M〚B〛, ⊕)

where a ⊕ a’ = a +〚A〛a’; b ⊕ b’ = b +〚B〛b’; a ⊕ b = a

• F〚 LP(A) 〛= { λx.a | a ∈ M〚A〛}

• a ⊕〚LP(A)〛a’ = a

Integration of properties

• We can make sense of properties in the same framework

• Want DISTRIB〚 A 〛iff A is distributive

• Prove DISTRIB〚 A x B 〛= (DISTRIB〚 A 〛and DISTRIB〚 B 〛)

• and so forth

Scoped product derivation

• A Θ B = (OP(A) ×lex B) +F (A ×lex LP(B))

• M〚 A Θ B 〛

= M〚OP(A) ×lex B〛∪ M〚 A ×lex LP(B)〛

= (M〚OP(A)〛× M〚B〛) ∪ (M〚A〛× M〚LP(B)〛)

= (M〚A〛× M〚B〛)

• F〚A Θ B〛

= F〚OP(A) ×lex B〛∪ F〚A ×lex LP(B)〛

= (F〚OP(A)〛× F〚B〛) ∪ (F〚A〛× F〚LP(B)〛)

= { (id, f) | f ∈ F〚B〛} ∪ { (g, λx.b) | g ∈ F〚A〛, b ∈ M〚B〛}

Scoped product

(a, b) (f(a), b’)

(f(a), h(b’))

(g(f(a)), b’’)

(f, b’)

(g, b’’)
h

Future directions

• Generate programs / configuration files by the same means

• Handle more complex policy interactions

• Maths: find good operators from the category theory zoo

• Deeper understanding of algorithms

• Modality, migration, other protocol aspects

