# Algebraic metalanguages for routing policy specification

Alexander Gurney Computer Laboratory, University of Cambridge

Multi-Service Networks 2006 Cosener's House, Abingdon, UK

# The Metarouting Idea

- A language for policy
- Build up complex protocol descriptions, as simple algebras combined in known ways
- Susceptible to proof
- Suitable for implementation
- One language, many meanings



#### Meanwhile, in the world of mathematics

- The shortest path problem, with numbers (Dijkstra, Bellman / Ford, Moore / Shannon; and related works back to at least 1871)
- Generalised shortest paths (Gondran / Minoux; Carré; Berge; ...)
- All kinds of fun algebra: monoids, semirings, semilattices and other ordered structures, actions, representations
- "If the algebra has property X then we can use algorithm Y to find an optimal solution" for various values of "X", "Y", and "optimal"

- Monoid (M, +, 0): closed, associative, identity
- Semiring (S,  $\land$ ,  $\oplus$ ,  $\top$ , 0): two monoids (S,  $\land$ ,  $\top$ ), (S,  $\oplus$ , 0) on the same set
- Path algebra: has commutativity, distributivity, idempotence (a + a = a)
- Examples:  $(\mathbb{N}^{\infty}, \min, +, \infty, 0)$ ,  $(\mathcal{P}(A), \cap, \cup, A, \emptyset)$ ,  $(\mathbb{R}^+, \max, \min, 0, \infty)$



- Monoid (M, +, 0): closed, associative, identity
- Semiring (S,  $\land$ ,  $\oplus$ ,  $\top$ , 0): two monoids (S,  $\land$ ,  $\top$ ), (S,  $\oplus$ , 0) on the same set
- Path algebra: has commutativity, distributivity, idempotence (a + a = a)
- Examples: (N $^{\infty}$ , min, +,  $\infty$ , 0), ( $\mathcal{P}(A)$ ,  $\cap$ ,  $\cup$ , A,  $\varnothing$ ), ( $\mathbf{R}^{+}$ , max, min, 0,  $\infty$ )



- Monoid (M, +, 0): closed, associative, identity
- Semiring (S,  $\land$ ,  $\oplus$ ,  $\top$ , 0): two monoids (S,  $\land$ ,  $\top$ ), (S,  $\oplus$ , 0) on the same set
- Path algebra: has commutativity, distributivity, idempotence (a + a = a)
- Examples: (N $^{\infty}$ , min, +,  $\infty$ , 0), ( $\mathcal{P}(A)$ ,  $\cap$ ,  $\cup$ , A,  $\varnothing$ ), ( $\mathbf{R}^{+}$ , max, min, 0,  $\infty$ )



- Monoid (M, +, 0): closed, associative, identity
- Semiring (S,  $\land$ ,  $\oplus$ ,  $\top$ , 0): two monoids (S,  $\land$ ,  $\top$ ), (S,  $\oplus$ , 0) on the same set
- Path algebra: has commutativity, distributivity, idempotence (a + a = a)
- Examples: (N $^{\infty}$ , min, +,  $\infty$ , 0), ( $\mathcal{P}(A)$ ,  $\cap$ ,  $\cup$ , A,  $\varnothing$ ), ( $\mathbf{R}^{+}$ , max, min, 0,  $\infty$ )



- Monoid (M, +, 0): closed, associative, identity
- Semiring (S,  $\land$ ,  $\oplus$ ,  $\top$ , 0): two monoids (S,  $\land$ ,  $\top$ ), (S,  $\oplus$ , 0) on the same set
- Path algebra: has commutativity, distributivity, idempotence (a + a = a)
- Examples:  $(\mathbb{N}^{\infty}, \min, +, \infty, 0)$ ,  $(\mathcal{P}(A), \cap, \cup, A, \emptyset)$ ,  $(\mathbb{R}^+, \max, \min, 0, \infty)$



- Monoid (M, +, 0): closed, associative, identity
- Semiring (S,  $\land$ ,  $\oplus$ ,  $\top$ , 0): two monoids (S,  $\land$ ,  $\top$ ), (S,  $\oplus$ , 0) on the same set
- Path algebra: has commutativity, distributivity, idempotence (a + a = a)
- Examples: (N $^{\infty}$ , min, +,  $\infty$ , 0), ( $\mathcal{P}(A)$ ,  $\cap$ ,  $\cup$ , A,  $\varnothing$ ), (R $^{+}$ , max, min, 0,  $\infty$ )



- Monoid (M, +, 0): closed, associative, identity
- Semiring (S,  $\land$ ,  $\oplus$ ,  $\top$ , 0): two monoids (S,  $\land$ ,  $\top$ ), (S,  $\oplus$ , 0) on the same set
- Path algebra: has commutativity, distributivity, idempotence (a + a = a)
- Examples:  $(\mathbb{N}^{\infty}, \min, +, \infty, 0)$ ,  $(\mathcal{O}(A), \cap, \cup, A, \emptyset)$ ,  $(\mathbb{R}^+, \max, \min, 0, \infty)$



- Monoid (M, +, 0): closed, associative, identity
- Semiring (S,  $\land$ ,  $\oplus$ ,  $\top$ , 0): two monoids (S,  $\land$ ,  $\top$ ), (S,  $\oplus$ , 0) on the same set
- Path algebra: has commutativity, distributivity, idempotence (a + a = a)
- Examples:  $(\mathbb{N}^{\infty}, \min, +, \infty, 0)$ ,  $(\mathcal{P}(A), \cap, \cup, A, \emptyset)$ ,  $(\mathbb{R}^+, \max, \min, 0, \infty)$



- Monoid (M, +, 0): closed, associative, identity
- Semiring (S,  $\land$ ,  $\oplus$ ,  $\top$ , 0): two monoids (S,  $\land$ ,  $\top$ ), (S,  $\oplus$ , 0) on the same set
- Path algebra: has commutativity, distributivity, idempotence (a + a = a)
- Examples: ( $\mathbb{N}^{\infty}$ , min, +,  $\infty$ , 0), ( $\mathcal{O}(A)$ ,  $\cap$ ,  $\cup$ , A,  $\emptyset$ ), ( $\mathbb{R}^{+}$ , max, min, 0,  $\infty$ )



- Monoid (M, +, 0): closed, associative, identity
- Semiring (S,  $\land$ ,  $\oplus$ ,  $\top$ , 0): two monoids (S,  $\land$ ,  $\top$ ), (S,  $\oplus$ , 0) on the same set
- Path algebra: has commutativity, distributivity, idempotence (a + a = a)
- Examples:  $(N^{\infty}, \min, +, \infty, 0)$ ,  $(\mathcal{P}(A), \cap, \cup, A, \emptyset)$ ,  $(R^+, \max, \min, 0, \infty)$



- Monoid (M, +, 0): closed, associative, identity
- Semiring (S,  $\land$ ,  $\oplus$ ,  $\top$ , 0): two monoids (S,  $\land$ ,  $\top$ ), (S,  $\oplus$ , 0) on the same set
- Path algebra: has commutativity, distributivity, idempotence (a + a = a)
- Examples:  $(\mathbb{N}^{\infty}, \min, +, \infty, 0), (\mathscr{O}(A), \cap, \cup, A, \varnothing), (\mathbb{R}^+, \max, \min, 0, \infty)$



- Monoid (M, +, 0): closed, associative, identity
- Semiring (S,  $\land$ ,  $\oplus$ ,  $\top$ , 0): two monoids (S,  $\land$ ,  $\top$ ), (S,  $\oplus$ , 0) on the same set
- Path algebra: has commutativity, distributivity, idempotence (a + a = a)
- Examples:  $(\mathbb{N}^{\infty}, \min, +, \infty, 0), (\mathcal{O}(A), \cap, \cup, A, \emptyset), (\mathbb{R}^+, \max, \min, 0, \infty)$



- Monoid (M, +, 0): closed, associative, identity
- Semiring (S,  $\land$ ,  $\oplus$ ,  $\top$ , 0): two monoids (S,  $\land$ ,  $\top$ ), (S,  $\oplus$ , 0) on the same set
- Path algebra: has commutativity, distributivity, idempotence (a + a = a)
- Examples:  $(N^{\infty}, \min, +, \infty, 0), (\mathcal{O}(A), \cap, \cup, A, \emptyset), (R^+, \max, \min, 0, \infty)$



- Monoid (M, +, 0): closed, associative, identity
- Semiring (S,  $\land$ ,  $\oplus$ ,  $\top$ , 0): two monoids (S,  $\land$ ,  $\top$ ), (S,  $\oplus$ , 0) on the same set
- Path algebra: has commutativity, distributivity, idempotence (a + a = a)
- Examples:  $(N^{\infty}, \min, +, \infty, 0)$ ,  $(\mathcal{P}(A), \cap, \cup, A, \emptyset)$ ,  $(R^+, \max, \min, 0, \infty)$



- Monoid (M, +, 0): closed, associative, identity
- Semiring (S,  $\land$ ,  $\oplus$ ,  $\top$ , 0): two monoids (S,  $\land$ ,  $\top$ ), (S,  $\oplus$ , 0) on the same set
- Path algebra: has commutativity, distributivity, idempotence (a + a = a)
- Examples:  $(N^{\infty}, \min, +, \infty, 0), (\mathcal{O}(A), \cap, \cup, A, \emptyset), (R^+, \max, \min, 0, \infty)$



- Monoid (M, +, 0): closed, associative, identity
- Semiring (S,  $\land$ ,  $\oplus$ ,  $\top$ , 0): two monoids (S,  $\land$ ,  $\top$ ), (S,  $\oplus$ , 0) on the same set
- Path algebra: has commutativity, distributivity, idempotence (a + a = a)
- Examples:  $(N^{\infty}, \min, +, \infty, 0)$ ,  $(\mathcal{P}(A), \cap, \cup, A, \emptyset)$ ,  $(R^+, \max, \min, 0, \infty)$



- Monoid (M, +, 0): closed, associative, identity
- Semiring (S,  $\land$ ,  $\oplus$ ,  $\top$ , 0): two monoids (S,  $\land$ ,  $\top$ ), (S,  $\oplus$ , 0) on the same set
- Path algebra: has commutativity, distributivity, idempotence (a + a = a)
- Examples:  $(\mathbb{N}^{\infty}, \min, +, \infty, 0), (\mathscr{O}(A), \cap, \cup, A, \varnothing), (\mathbb{R}^+, \max, \min, 0, \infty)$



- Monoid (M, +, 0): closed, associative, identity
- Semiring (S,  $\land$ ,  $\oplus$ ,  $\top$ , 0): two monoids (S,  $\land$ ,  $\top$ ), (S,  $\oplus$ , 0) on the same set
- Path algebra: has commutativity, distributivity, idempotence (a + a = a)
- Examples:  $(\mathbb{N}^{\infty}, \min, +, \infty, 0), (\mathscr{O}(A), \cap, \cup, A, \varnothing), (\mathbb{R}^+, \max, \min, 0, \infty)$



# Combining operations

- D = ( $\mathbb{N}^{\infty}$ , min, +,  $\infty$ , 0), B = ( $\mathbb{R}^{+}$ , max, min, 0,  $\infty$ )
- D × B = ( $\mathbb{N}^{\infty}$  ×  $\mathbb{R}^{+}$ ,  $\wedge$ ,  $\oplus$ , ( $\infty$ , 0), (0,  $\infty$ )), where (d, b)  $\wedge$  (e, c) = ( $\min(d, e)$ ,  $\max(b, c)$ ) (d, b)  $\oplus$  (e, c) = (d + e,  $\min(b, c)$ )
- D  $\times_{lex}$  B = (N $^{\infty}$   $\times$  R $^{+}$ ,  $\wedge_{lex}$ ,  $\oplus$ , ( $\infty$ , 0), (0,  $\infty$ )), where
  - $(d, b) \wedge_{lex} (e, c) = (d, b)$  if d < e or [d = e and b > c]; (b, c) otherwise
  - ⊕ is as before

We obtain < from min by defining  $a \le b$  iff  $a = \min(a, b)$ 

# Dijkstra's algorithm and the prefix property

- To get the right answer out of Dijkstra, we need each prefix of a shortest path to also be a shortest path
- In semiring language:  $a = a \land b \Rightarrow (m + a) = (m + a) \land (m + b)$ , for all a, b, m



• This is the case when we have distributivity:  $(m + a) \land (m + b) = m + (a \land b)$ 

# Property preservation

- If A and B are distributive, then so is  $A \times B$ ; but  $A \times_{lex} B$  may not be
- So if we have a whole load of distributive semirings A, B, C, and D, then we know we can run Dijkstra correctly on A × B × C × D
- Similar rules exist for other properties and other operations so we can deduce facts like "we can't do Dijkstra, but we can do Bellman-Ford"

#### Expressiveness issues

- Consider the ASPATH attribute of BGP (a list of numbers; shorter lists are preferred, but we don't care about the contents). How can we encode this?
- Surely S must be the set of lists, and ⊕ is the append operation...

...and we can say by convention that we will only put one-element lists on the arcs...

...but what should  $\land$  be for two lists of equal length? It has to be something different from either operand, so maybe we can have a special "equal length" symbol, "**E**". But then what is **E**  $\land$  *a* ? We actually need an **E**<sub>k</sub> for each *k*. And we can extend  $\oplus$  to work on these, too.

#### Expressiveness issues

- We now have a consistent algebra
- But we've lost touch with reality
- $E_1 = E_1 \wedge [1]$ , so  $E_1 < [1]$
- **E**<sub>k</sub> tells us nothing about the actual path. And we prefer these to concrete lists!



# Multiple equivalent paths

- S now consists of sets of lists (where all lists in a set are of the same length)
- A  $\oplus$  B = { append(a, b) |  $a \in A$ ,  $b \in B$  }; identity { [ ] }
- A  $\wedge$  B = {  $x \in A \cup B \mid \forall y \in A \cup B : |x| \le |y|$  }; identity  $\varnothing$
- Only ever put { [n] } on the arcs
- Is this really 'natural'? Can it be derived automatically?

# Model II: Routing algebras

- (S,  $\leq$ ) where  $\leq$  is a preference relation (reflexive, transitive, total)
- Label set L; application function ⊕: L × S → S
- Very general (even more so if we extend ≤ to a preorder)

We can encode ASPATH very easily, along with our other examples

Price to pay: not so algebraically nice

# Model III: Functional path algebras

- A hybrid of (S, ⊕, ∧, 0, 1) and (S, ≤, L, ⊕)
- (M, F) where M is a commutative monoid and F a set of functions M → M
- Elements of F go on the arcs
- If everything in F is a homomorphism, then these look a lot like path algebras. But we do not require this.

# Embed routing algebra in functional path algebra

• (S,  $\leq$ , L,  $\oplus$ )  $\rightarrow$  (( $\varnothing_{\leq}$  (S),  $\cup_{\leq}$ ), F<sub>L</sub>), where  $\varnothing_{\leq} (S) = \{ A \subseteq S \mid \min_{\leq} (S) = S \}$   $A \cup_{\leq} B = \min_{\leq} (A \cup B)$   $F_{L} = \{ \lambda S . \min_{\leq} \{ / \oplus s \mid s \in S \} \mid / \text{ in } L \}$ 

- Multipath routing with a partial order, but secretly based on a far more general order
- Arc labels are better than before they seem like single elements

# The ASPATH example

Routing algebra is (S, ≤, L, ⊕) where

S = lists of AS numbers (and no list has the same number twice), plus E

≤ orders lists by length; **E** is topmost

L = AS numbers

 $n \oplus ns = n:ns$  (unless n is in ns or n:ns is too long, when we return **E**)

# The ASPATH example

• As a functional path algebra:  $((\varnothing_{\leq} (S), \cup_{\leq}), F_L)$ 

Each element of  $\mathcal{O}_{\leq}$  (S) is a set of lists; all lists have the same length (and there is also an element  $\{\mathbf{E}\}$ )

 $p \cup_{\leq} q$  is the set of shortest lists in  $p \cup q$ 

so { [2, 1], [5, 1] } 
$$\cup$$
 { [6, 1] } = { [2, 1], [5, 1], [6, 1] };

and 
$$\{ [2, 1] \} \cup_{\leq} \{ [4] \} = \{ [4] \}$$

Each element of F is a function  $f_k$ , adding k to each list in the given set

$$f_6 \{ [1, 4], [3, 6] \} = \min \{ [6, 1, 4], \mathbf{E} \} = \{ [6, 1, 4] \}$$

#### Canonical constructions

- Direct and lexical products
- Parallel sum A || B: a + b = **E**
- Layered sum A  $\triangleleft$  B: a + b = a
- Local preference:  $F = \{ \lambda x.a \mid a \}$
- Origin preference: F = { id }
- many more



# The metalanguage

- Borrow syntax from maths (but this will definitely be syntax)
- Expressions E ::= atom | unary(E) | (E binary E)
   unary ::= LP, OP, FLIP, FLATTEN, ...
   binary ::= ×, ×<sub>lex</sub>, ||, ⊲, ...
- For each kind of structure, an evaluation function, appropriately typed written as (S, ≤) [ ... ] = ...
- Notational convenience:  $(A_1, ..., A_k)$   $[ ... ] = (A_1 [ ... ] , ..., A_k [ ... ] )$

# Sample rules

```
\bullet \leq [A \mid B] = \leq [A] \cup \leq [B]
```

• (M, +) 
$$\llbracket A \triangleleft B \rrbracket = (M \llbracket A \rrbracket \cup M \llbracket B \rrbracket , \oplus)$$
  
where  $a \oplus a' = a + {\llbracket A \rrbracket} a'; b \oplus b' = b + {\llbracket B \rrbracket} b'; a \oplus b = a$ 

- F  $\llbracket LP(A) \rrbracket = \{ \lambda x.a \mid a \in M \llbracket A \rrbracket \}$
- $a \oplus \text{[LP(A)]} a' = a$

# Integration of properties

- We can make sense of properties in the same framework
- Want DISTRIB [A] iff A is distributive
- Prove DISTRIB [AxB] = (DISTRIB [A] and DISTRIB [B])
- and so forth

# Scoped product derivation

```
• A \Theta B = ( OP(A) \times_{lex} B ) +<sub>F</sub> ( A \times_{lex} LP(B) )
• M [AΘB]
  = M [OP(A) \times_{lex} B] \cup M [A \times_{lex} LP(B)]
  = (M [OP(A)] \times M [B]) \cup (M [A] \times M [LP(B)])
  = (M [A] \times M [B])
• F [A Θ B]
  = F [OP(A) \times_{lex} B] \cup F [A \times_{lex} LP(B)]
  = (F [OP(A)] \times F [B]) \cup (F [A] \times F [LP(B)])
  = \{ (id, f) \mid f \in F \llbracket B \rrbracket \} \cup \{ (g, \lambda x.b) \mid g \in F \llbracket A \rrbracket , b \in M \llbracket B \rrbracket \} \}
```

# Scoped product



#### Future directions

- Generate programs / configuration files by the same means
- Handle more complex policy interactions
- Maths: find good operators from the category theory zoo
- Deeper understanding of algorithms
- Modality, migration, other protocol aspects