Algebraic metalanguages
for routing policy specification

Alexander Gurney
Computer Laboratory, University of Cambridge

Multi-Service Networks 2006
Cosener’s House, Abingdon, UK

The Metarouting ldea

¢ A language for policy

¢ Build up complex protocol
descriptions, as simple algebras
combined in known ways

e Susceptible to proof

e Suitable for implementation

¢ One language, many meanings

Meanwhile, in the world of mathematics

e The shortest path problem, with numbers (Dijkstra, Bellman / Ford, Moore /
Shannon; and related works back to at least 1871)

e Generalised shortest paths (Gondran / Minoux; Carré; Berge; ...)

¢ All kinds of fun algebra: monoids, semirings, semilattices and other ordered
structures, actions, representations

¢ “If the algebra has property X then we can use algorithm Y to find an optimal
solution” for various values of “X”, “Y”, and “optimal”

Model |: Path algebra

e Monoid (M, +, 0): closed, associative, identity

e Semiring (S, A, ®, T, 0): two monoids (S, A, T), (S, &, 0) on the same set

e Path algebra: has commutativity, distributivity, idempotence (a + a = a)

®* Examples: (N®, min, +, o, 0), (¢(A), N, U, A, @), (R*, max, min, 0,)

Model |: Path algebra

e Monoid (M, +, 0): closed, associative, identity

e Semiring (S, A, ®, T, 0): two monoids (S, A, T), (S, &, 0) on the same set

e Path algebra: has commutativity, distributivity, idempotence (a + a = a)

®* Examples: (N®, min, +, o, 0), (¢(A), N, U, A, @), (R*, max, min, 0,)

Model |: Path algebra

e Monoid (M, +, 0): closed, associative, identity

e Semiring (S, A, ®, T, 0): two monoids (S, A, T), (S, &, 0) on the same set

e Path algebra: has commutativity, distributivity, idempotence (a + a = a)

®* Examples: (N®, min, +, o, 0), (¢(A), N, U, A, @), (R*, max, min, 0,)

0+2+4+6+4

Model |: Path algebra

e Monoid (M, +, 0): closed, associative, identity

e Semiring (S, A, ®, T, 0): two monoids (S, A, T), (S, &, 0) on the same set

e Path algebra: has commutativity, distributivity, idempotence (a + a = a)

®* Examples: (N®, min, +, o, 0), (¢(A), N, U, A, @), (R*, max, min, 0,)

Model |: Path algebra

e Monoid (M, +, 0): closed, associative, identity

e Semiring (S, A, ®, T, 0): two monoids (S, A, T), (S, &, 0) on the same set

e Path algebra: has commutativity, distributivity, idempotence (a + a = a)

®* Examples: (N®, min, +, o, 0), (¢(A), N, U, A, @), (R*, max, min, 0,)

10
O0+5+2+6+4

Model |: Path algebra

e Monoid (M, +, 0): closed, associative, identity

e Semiring (S, A, ®, T, 0): two monoids (S, A, T), (S, &, 0) on the same set

e Path algebra: has commutativity, distributivity, idempotence (a + a = a)

®* Examples: (N®, min, +, o, 0), (¢(A), N, U, A, @), (R*, max, min, 0,)

Model |: Path algebra

e Monoid (M, +, 0): closed, associative, identity

e Semiring (S, A, ®, T, 0): two monoids (S, A, T), (S, &, 0) on the same set

e Path algebra: has commutativity, distributivity, idempotence (a + a = a)

®* Examples: (N®, min, +, o, 0), (¢(A), N, U, A, @), (R*, max, min, 0,)

10
17

0+5+4+9+1

Model |: Path algebra

e Monoid (M, +, 0): closed, associative, identity

e Semiring (S, A, ®, T, 0): two monoids (S, A, T), (S, &, 0) on the same set

e Path algebra: has commutativity, distributivity, idempotence (a + a = a)

®* Examples: (N®, min, +, o, 0), (¢(A), N, U, A, @), (R*, max, min, 0,)

Model |: Path algebra

e Monoid (M, +, 0): closed, associative, identity

e Semiring (S, A, ®, T, 0): two monoids (S, A, T), (S, &, 0) on the same set

e Path algebra: has commutativity, distributivity, idempotence (a + a = a)

®* Examples: (N®, min, +, o, 0), (¢(A), N, U, A, @), (R*, max, min, 0,)

Model |: Path algebra

e Monoid (M, +, 0): closed, associative, identity

e Semiring (S, A, ®, T, 0): two monoids (S, A, T), (S, &, 0) on the same set

e Path algebra: has commutativity, distributivity, idempotence (a + a = a)

®* Examples: (N*, min, +, o, 0), (£(A), N, U, A, &), (R*, max, min, 0, «)

Model |: Path algebra

e Monoid (M, +, 0): closed, associative, identity

e Semiring (S, A, ®, T, 0): two monoids (S, A, T), (S, &, 0) on the same set

e Path algebra: has commutativity, distributivity, idempotence (a + a = a)

®* Examples: (N*, min, +, o, 0), (£(A), N, U, A, &), (R*, max, min, 0, «)

Model |: Path algebra

e Monoid (M, +, 0): closed, associative, identity

e Semiring (S, A, ®, T, 0): two monoids (S, A, T), (S, &, 0) on the same set

e Path algebra: has commutativity, distributivity, idempotence (a + a = a)

®* Examples: (N*, min, +, o, 0), (£(A), N, U, A, &), (R*, max, min, 0, «)

45 (2, 4,58, 4.5)

Model |: Path algebra

e Monoid (M, +, 0): closed, associative, identity

e Semiring (S, A, ®, T, 0): two monoids (S, A, T), (S, &, 0) on the same set

e Path algebra: has commutativity, distributivity, idempotence (a + a = a)

®* Examples: (N*, min, +, o, 0), (£(A), N, U, A, &), (R*, max, min, 0, «)

Model |: Path algebra

e Monoid (M, +, 0): closed, associative, identity

e Semiring (S, A, ®, T, 0): two monoids (S, A, T), (S, &, 0) on the same set
e Path algebra: has commutativity, distributivity, idempotence (a + a = a)

®* Examples: (N*, min, +, o, 0), (£(A), N, U, A, &), (R*, max, min, 0, «)

2
(5,2.3,5.8, 4.5)

Model |: Path algebra

e Monoid (M, +, 0): closed, associative, identity

e Semiring (S, A, ®, T, 0): two monoids (S, A, T), (S, &, 0) on the same set

e Path algebra: has commutativity, distributivity, idempotence (a + a = a)

®* Examples: (N*, min, +, o, 0), (£(A), N, U, A, &), (R*, max, min, 0, «)

Model |: Path algebra

e Monoid (M, +, 0): closed, associative, identity

e Semiring (S, A, ®, T, 0): two monoids (S, A, T), (S, &, 0) on the same set

e Path algebra: has commutativity, distributivity, idempotence (a + a = a)

®* Examples: (N*, min, +, o, 0), (£(A), N, U, A, &), (R*, max, min, 0, «)

Model |: Path algebra

e Monoid (M, +, 0): closed, associative, identity

e Semiring (S, A, ®, T, 0): two monoids (S, A, T), (S, &, 0) on the same set

e Path algebra: has commutativity, distributivity, idempotence (a + a = a)

®* Examples: (N*, min, +, o, 0), (£(A), N, U, A, &), (R*, max, min, 0, «)

Model |: Path algebra

e Monoid (M, +, 0): closed, associative, identity

e Semiring (S, A, ®, T, 0): two monoids (S, A, T), (S, &, 0) on the same set

e Path algebra: has commutativity, distributivity, idempotence (a + a = a)

®* Examples: (N*, min, +, o, 0), (£(A), N, U, A, &), (R*, max, min, 0, «)

Combining operations

* D = (N*, min, +, o, 0), B = (R*, max, min, 0,)

e D x B=(N*xR* A, D, (0, 0), (0,), where
(d, b) A (e, ¢) = (min(d, e), max(b, ¢))

d, b) ® (e, ¢) = (d + e, min(b, ¢))

® D xjex B = (N* x R*, Alex, P, (o0, 0), (0, o)), where
(d, b) Nex (6,) =(d, b)ifd <eor[d=eandb > c]; (b, c) otherwise
@ is as before

We obtain < from min by defining a < b iff a = min(a, b)

Dijkstra’s algorithm and the prefix property

¢ To get the right answer out of Dijkstra, we need each prefix of a shortest path
to also be a shortest path

e |[n semiring language:a=aAb=mM+a)=Mm+a)A(m+b), foralla, b, m

¢ This is the case when we have distributivity: m+a) A (m+b)=m + (@ A b)

Property preservation

e [f A and B are distributive, then so is A x B; but A xiex B may not be

e So if we have a whole load of distributive semirings A, B, C, and D, then we
know we can run Dijkstra correctly on Ax B x C x D

e Similar rules exist for other properties and other operations — so we can
deduce facts like “we can’t do Dijkstra, but we can do Bellman-Ford”

Expressiveness issues

e Consider the ASPATH attribute of BGP (a list of numbers; shorter lists are
preferred, but we don’t care about the contents). How can we encode this?

e Surely S must be the set of lists, and @ is the append operation...

...and we can say by convention that we will only put one-element lists on
the arcs...

...but what should A be for two lists of equal length? It has to be

something different from either operand, so maybe we can have a
special “equal length” symbol, “E”. But then what is E A a ? We actually

need an Exfor each k. And we can extend @ to work on these, too.

EXpressiveness Issues

e \We now have a consistent
algebra

e But we’ve lost touch with reality

e Ei=EiA[1],s0o E1 <[]

® Ei tells us nothing about the
actual path. And we prefer these
to concrete lists!

better

lists of length 6

Es

lists of length 5

Es

Multiple equivalent paths

¢ S now consists of sets of lists (where all lists in a set are of the same length)

e A®D B ={append(a b)|a€ A, beB};identity {[]}

e AAB={xeAUB|VyeAuUB:|x<|yl}; identity &

e Only ever put { [n] } on the arcs

e |s this really ‘natural’? Can it be derived automatically?

Model Il: Routing algebras

¢ (S, <) where < is a preference relation (reflexive, transitive, total)

e | abel set L; application function ®:L xS =+ S

¢ \/ery general (even more so if we extend < to a preorder)
We can encode ASPATH very easily, along with our other examples

® Price to pay: not so algebraically nice

Model lll: Functional path algebras

e A hybrid of (S, ®, A,0,1)and (S, <, L, @)

e (M, F) where M is a commutative monoid and F a set of functions M = M

¢ Elements of F go on the arcs

e |[f everything in F is a homomorphism, then these look a lot like path algebras.
But we do not require this.

Embed routing algebra in functional path algebra

*S, S L D) = (< (S), Ug), Fu), where

P-(S)={ACS|min=(S) =S
AU§ B = ming(AU B)

FL={AS.min<{/®Ps|seS}|/inL}

¢ Multipath routing with a partial order, but secretly based on a far more general
order

e Arc labels are better than before — they seem like single elements

The ASPATH example

e Routing algebra is (S, <, L, @) where

S = lists of AS numbers (and no list has the same number twice), plus E

< orders lists by length; E is topmost
L = AS numbers

n @ ns = n:ns (unless n is in ns or n:ns is too long, when we return E)

The ASPATH example

® As a functional path algebra: (< (S), U<), FL)

Each element of &< (S) is a set of lists; all lists have the same length (and
there is also an element {E})

p U< q is the set of shortest listsinp U g
so{[2,1], [5, 1]} u<{[6,1]}={[2, 1], [5, 1], [6,1] };

and {2, 1]} u<{[4] } ={[4] }

Each element of F is a function fx, adding k to each list in the given set

fe{[1,4],[3,6]}=min{[6,1,4,E}={[6,1,4]}

Canonical constructions

e Direct and lexical products

e Parallelsum A||B:a+b=E

e ayeredsumA<B:a+b=a

e | ocal preference: F ={ Ax.a|a}

e Origin preference: F ={id }

® many more

The metalanguage

e Borrow syntax from maths (but this will definitely be syntax)

e Expressions E ::= atom | unary(E) | (E binary E)
unary ::= LP, OP, FLIP, FLATTEN, ...

binary ::= x, Xex, ||, <, ...

¢ For each kind of structure, an evaluation function, appropriately typed

writtenas (S, <) [...] = ...

e Notational convenience: (A1, ... ,A) [...1 =(A+ [... 1, ..., A [...1)

Sample rules

e<[A|BI] =<1I[Al u < I[BI

eM,+) [A<BI = (M [A] u M [B] ,®)

wherea®a’'=a +apa;bdb’ =b+ b adb=a

eF[LPA)] ={M.a|aeM [A] }

ea® paga =a

Integration of properties

¢ \We can make sense of properties in the same framework
e Want DISTRIB [A] iff A is distributive

* Prove DISTRIB [AxB1] = (DISTRIB [A] and DISTRIB [B1])

e and so forth

Scoped product derivation

e AO B = (OP(A) xiex B) +F (A xi1ex LP(B))
eM[AOBI
=M [OP(A) xiex Bl UM [A xiex LP(B)]

=M [OPA)] xM [BI)u M [Al xM [LPB)])

=(M [A] xM [B])

o F [A GBI
= F [OP(A) xiex Bl UF [A xiex LP(B)]

= (F [oPA)] xF [BI)u (F [Al xF [LPB)I)

={(d,f)|feF [B] }u{(g,M.b)|geF [A] ,beM [B] }

Scoped product

Future directions

e Generate programs / configuration files by the same means

e Handle more complex policy interactions

e Maths: find good operators from the category theory zoo

e Deeper understanding of algorithms

e Modality, migration, other protocol aspects

