The Case for Pushing DNS

Mark Handley and Adam Greenhalgh UCL

MSN2006

(Originally presented at HotNets 2005)

1

In the beginning...

There was Jon Postel

And hosts.txt

And all was well.

Then came DNS And scale. And all was well.

Then came scale. And all was *not* well.

Then came DoS. And scale. And all was *not* well.

Lessons from Networking 101

• To make things scale, add hierarchy.

• To make things robust, avoid single points of failure.

DNS scales well because of its namespace hierarchy and elegant decentralized administration.

Because lookups follow the same hierarchy, DNS needs a root, and this is a potential single point of failure.

Lessons from History

- Unsuccessful large DoS attack against the root name servers in 2002.
 - Came close enough to be worrying.
 - Since then, anycast BGP has increased replication considerably. An attack of large enough scale would probably succeed though.

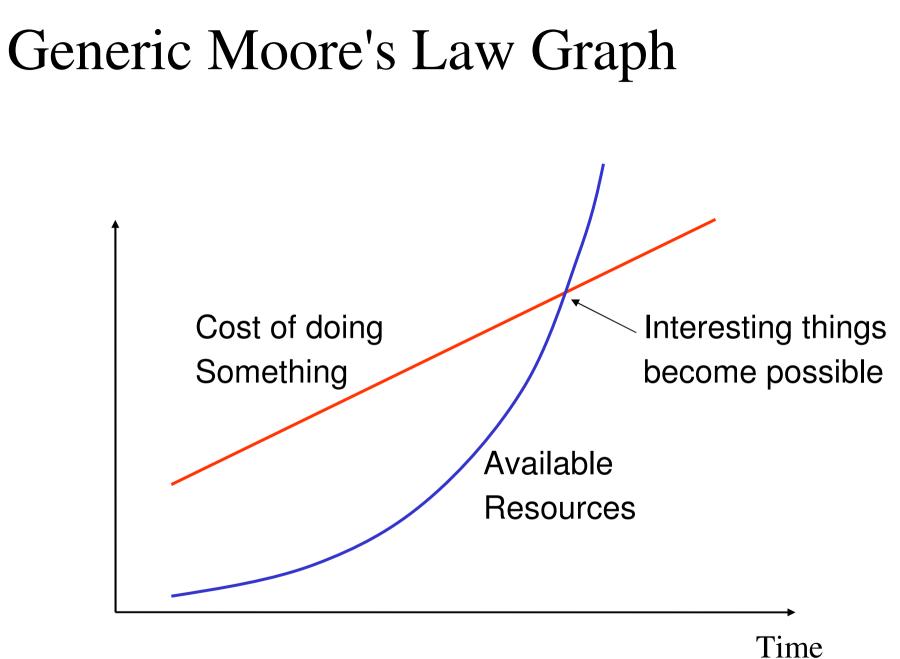
Cause for concern...

Thousands of companies are paying off online

2004 : 1m zombie machines.

Oct 2004 : Criminal gangs use bot-nets to extort money.

By <u>Gregg Keizer</u>, TechWeb 24 October 2005 15:30 AEST <u>Security</u> 30,000+ internet connected zombie


Oct 2005 : 1.5m host bot-net.

by Antony Savvas Mondav 7 November 2005

Broadband responsible for 93% increase in infected PCs in 2004

Nov 2005 : 0.4 m host bot-net conviction.

RVICE

Our idea

What's wrong with **hosts.txt**?

- Size of the data.
- Rate of change of the data.
- Centralized administration of the data.
- Distribution of the data to everyone.

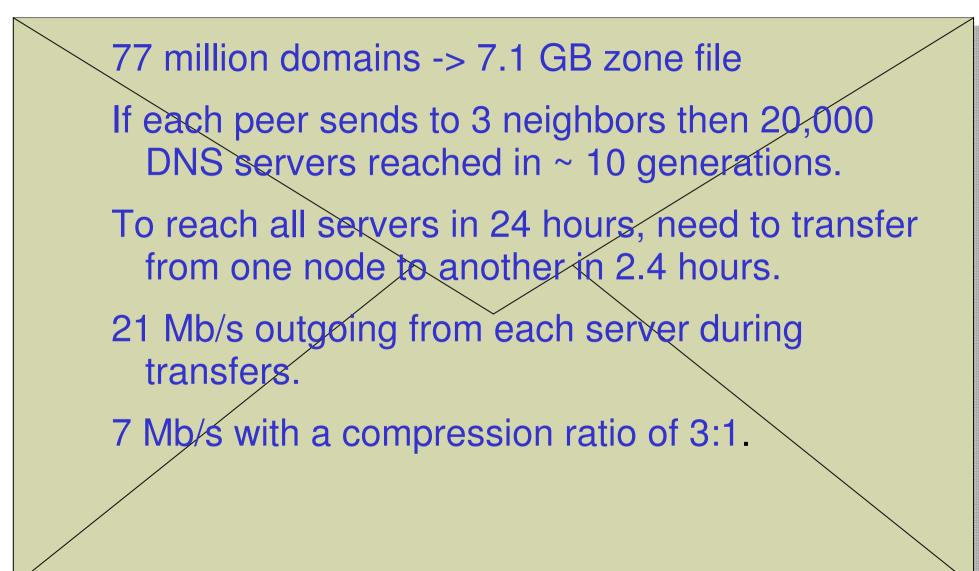
Assertion:

- With careful design, none of these is a problem.

Size of the Data.

- Take the core of DNS: root, all TLDs only.
 - Only the nameserver (NS) records, SOA data.
 - This data is relatively stable.
 - (not A records they are too dynamic)
- 76.9 million domains \rightarrow 7.1 GB zone file.
 - Currently growing *linearly* at about 27K domains/day.
- Conclusion: any PC could store this without difficulty.

Centralized Administration of the Data.


- Don't replace the existing DNS.
 - The administration process works reasonably well, modulo political issues.
- Just take the data already available and replicate it.

- Either:
 - Be Verisign.
 - Walk the DNS.
- Both are technically viable.

Distribution of Data

- Goals:
 - Replicate all 7GB of data to any DNS server in the world that wants it.
 - Do this at least once per day.
- Obvious solutions:
 - Multicast
 - Peer-to-peer.
- We chose the latter.

Back of the envelope...

Trust and Data Validity

- Simplest model:
 - Just sign the zone file.
 - Embed the public key in all peer-to-peer software.
 - Check the signature before passing data on.
- Nice properties:
 - A bad node can't pass on bad data.
 - Trust model is same as current Verisign root model.

Data Replication

- Issues:
 - 7 Mb/s is a little high.
 - Have to receive 7GB of data before checking sig.
- Refinement: Split the zone file into 1MB signed chunks.
 - Can forward one chunk while receiving next one. This spreads forwarding over the entire day.
 - Can reduce the fan-out degree to 2 because more generations not such an issue.
- Result: compressed data rate is now 470 Kb/s.

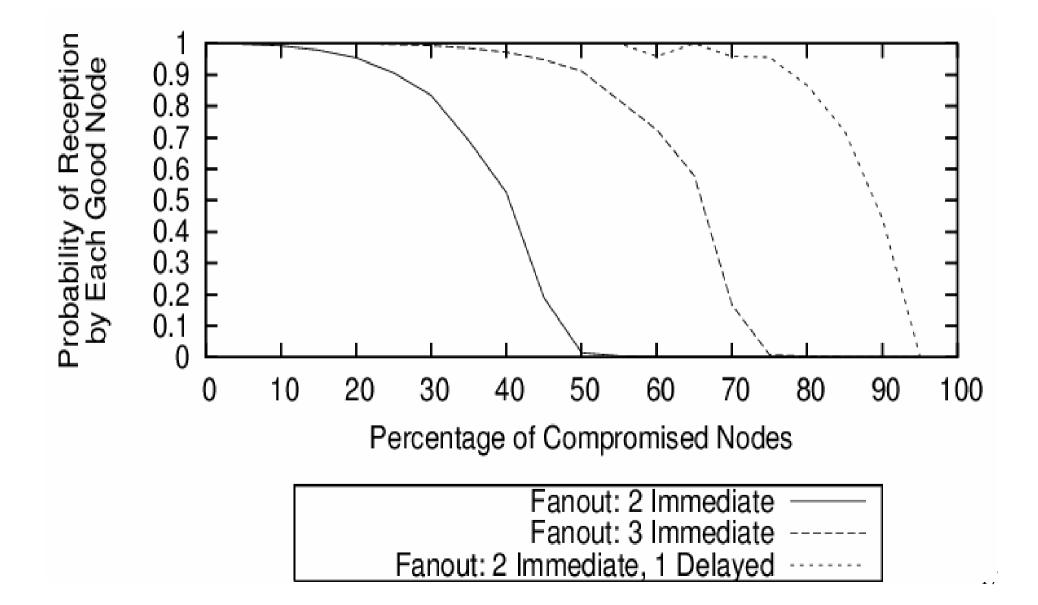
The story so far...

- Data size is not an issue.
- Data administration not an issue.
- Data replication is not an issue.
- Data corruption is not an issue.
- Potential issues:
 - DoS by servers within the peer-to-peer mesh.
 - Trust: one signature is fragile.
 - Churn: how fast does the data change?

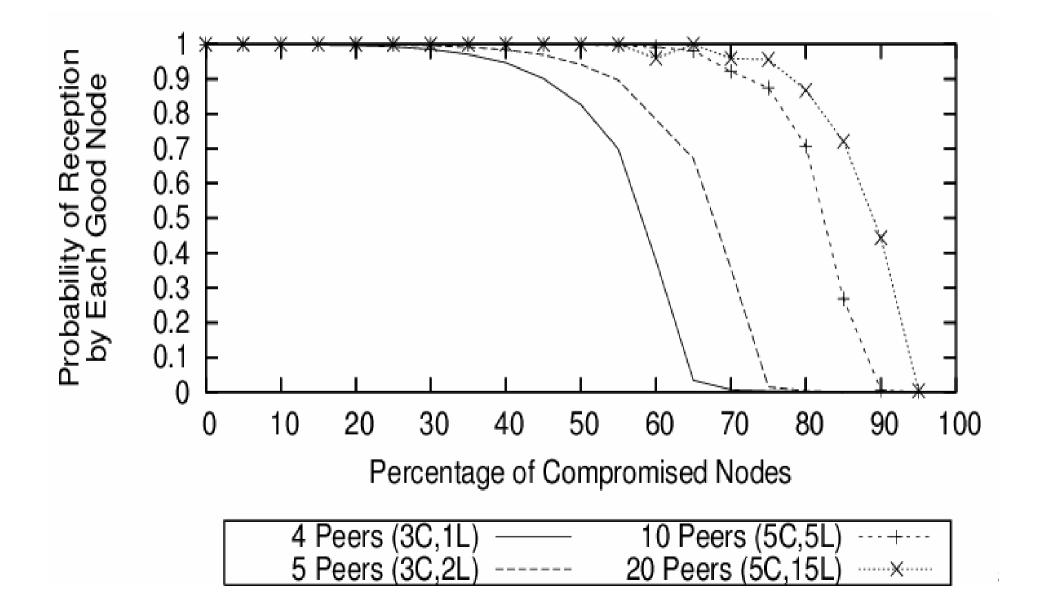
Potential Issue 1: Insider attacks...

A server can't corrupt data, but it can:

- Refuse to forward data.
- Sink data from many peers (sybil attack).
- Corrupt the structure of the peer-to-peer network.


To address the latter, use a mixture of peering types:

- Configured peerings, similar to NNTP
 - improve locality, not subject to structural attacks
- Randomised peerings
 - improve small world properties

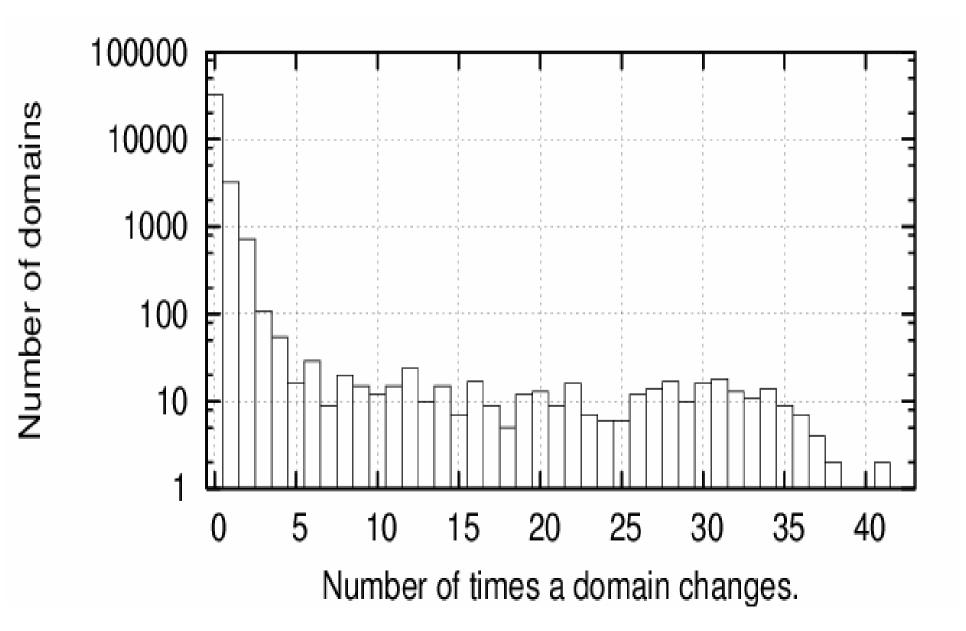

Potential Issue 1: Insider attacks...

- Wrote a simple simulator to examine reliability in the face of a large number of malicious nodes within the peer-to-peer mesh.
- Evaluate:
 - Effects of number of peers of each type.
 - Strategies for choosing who to send to, and when to send.

Insider attacks...

Insider attacks...

Simulation Summary


• Peer-to-peer flooding, done right, is *efficient* and *extremely robust* to insider attacks.

Potential Issue 2:

Rate of Change of Data

- We wrote a DNS monitor to observe how often DNS nameserver records actually change in the wild.
- 37,000 domains were monitored.
- Monitored domains for 60 days

Domain fluctuation

Changing domains and expiring

300 changes Number of domains 250 expired 200 150 100 50 06/18 06/04 06/11 06/25 07/23 07/02 07/09 07/16 Date

Rate of Change

- Each day :
 - -0.5% of domains change a nameserver entry.
 - 0.1% of domains expire.
- If we extrapolate to the entire DNS
 - 420,000 domains change per day
 - 100,000 domains expire per day
- Past growth figures suggest
 - 127,000 domains are created per day

Implications of Rate of Change

- Rate of change is not a big problem.
- But would be nice if updates didn't have to wait 24 hours.
- Can send whole data set weekly, then send *cumulative* deltas (since last weekly update) on an hourly basis.
 - Cumulative updates are higher bitrate, but much more robust as you only need the most recent of them.
 - Required data rate is 850Kb/s to send to three peers.

Potential Issue 3:

Trust

- Single signing authority is fragile.
- In the long run, probably not politically viable.
- DNSpush architecture can support multiple signatories originating data.
 - Can majority vote if they disagree.
- One master which sends signed data
- Other signatories send :
 - signatures for the master data
 - diffs where they disagree with master.

Conclusions.

We have shown that :

- The dumb solution is viable and removes the current weak point in the DNS system.
- It provides resilience to significant numbers of zombies.
- It enables the introduction of a new trust model.
- The data rates are reasonable and manageable even for a DSL customer.