
1

Michael Rogers

m.rogers@cs.ucl.ac.uk

Cooperation in Decentralised Networks

2

Cooperation in Decentralised Networks

1) Reciprocation

2) Cooperation over longer distances

3) Delivery receipts

3

Background

● Peer-to-peer, mobile ad hoc networks
● Infrastructure provided by users
● Incentives to contribute resources

4

Incentives

Three approaches:
● Micropayments
● Reputations
● Reciprocation

5

Reciprocation

● “Payment in kind” between neighbours
● Doesn't require currency
● Doesn't require system-wide identities

6

Requirements for Reciprocation

1. Authentication between neighbours

2. Expect a continuing relationship

3. Measure the benefit provided by neighbours

7

Is Reciprocation Rational?

● Will selfish nodes reciprocate?
● Need to define selfishness
● Economics: utility-maximising behaviour

8

Definition of Expected Utility

● Every action has a cost and one or more
possible outcomes

● Every outcome has a benefit and a probability
● Expected benefit = mean benefit of all

outcomes, weighted by probability

● Expected utility = expected benefit cost

9

Definition of Selfishness

● Given a choice of actions, a selfish node always
chooses the action with the highest expected
utility

● Maximise benefit for a given cost
● Minimise cost for a given benefit
● Costs and benefits are subjective

10

A Selfish View of Reciprocation

● Assume neighbours are selfish
● Measure the benefit provided by each neighbour
● Benefit is attributable to the work done for the

neighbour
● Benefit per unit of work done tells us the

expected benefit of doing more work

11

Prioritising Requests

● “A selfish node always chooses the action with
the highest expected utility”

● Serve requests in decreasing order of expected
utility, regardless of the order of arrival

– Cooperative neighbours get higher priority
– As a neighbour is served, its priority

decreases

12

Summary: Reciprocation

● Cooperation between immediate neighbours
● Only requires local information

– Decentralised
– Scalable

● Rational for selfish nodes to reciprocate

13

1) Reciprocation

2) Cooperation over longer distances

3) Delivery receipts

Cooperation in Decentralised Networks

14

Cooperation Over Longer Distances

● Reciprocation is local (single-hop)
● What about multi-hop interactions?

– Peer-to-peer search
– Packet forwarding

15

Cooperation Over Longer Distances

● Break each multi-hop interaction into a series of
single-hop interactions

● Each node:

– Provides a service to its upstream neighbour
– Requests a service from its downstream

neighbour

16

Proof of Work

● Need to measure the benefit provided by the
downstream neighbour

● Final node creates a proof of work
● Each node verifies the proof and forwards it

upstream

17

Proof of Work

Request Request Request

Endpoint Endpoint

18

Proof of Work

Request Request Request

Endpoint Endpoint

Proof Proof Proof

19

Proof of Work

● What is a suitable proof of work?
● Depends on the nature of the work...

20

1) Reciprocation

2) Cooperation over longer distances

3) Delivery receipts

Cooperation in Decentralised Networks

21

Delivery Receipts

● Proof of work for multi-hop packet forwarding
● Based on one-way hash functions
● Endpoints share a secret authentication key
● Relays don't need any keys

22

Delivery Receipts: Downstream

● Sender creates a unique secret for each packet
● The hash of the secret is attached to the packet
● Relays store the hash of the secret

23

Delivery Receipts: Upstream

● Recipient generates the same secret and sends
it as a receipt

● Relays hash the receipt and compare it to the
stored value

● The receipt is forwarded back to the sender
● Each node has proof that its downstream

neighbour forwarded the packet

24

Delivery Receipts Example

packet,
hash (receipt)

Sender Recipient

packet,
hash (receipt)

packet,
hash (receipt)

25

Delivery Receipts Example

Sender Recipient

receiptreceiptreceipt

packet,
hash (receipt)

packet,
hash (receipt)

packet,
hash (receipt)

26

Security Requirements

● Relays must not be able to forge receipts

– No two packets have the same receipt
– Receipts don't leak information about the

authentication key
– The hash function is 2nd-preimage-resistant

● Modifying the packet invalidates the receipt

27

Implementation Using MACs

● Message authentication codes have all the
required properties

● The receipt is the MAC of the packet
● The hash of the MAC is attached to the packet
● Relays don't verify the receipt as a MAC – they

just hash it and compare it to the stored value

28

Overhead of Delivery Receipts

● Bandwidth overhead: 20 bytes/packet
● Processing overhead: one hash/packet

● Storage overhead: 20 bytes/packet RTT

– OK if packets are large (file transfer)
– May not be OK if packets are small and

frequent (games/voice)

29

Reliability

● What if a node forwards a packet that is later
dropped downstream?

● The node has done work but can't prove it

30

Measuring Reliability

● Measure the reliability of the downstream path
● Estimate the probability of getting a receipt
● “Expected benefit = mean benefit of all

outcomes, weighted by probability”
● Forwarding on unreliable paths has lower

expected utility

31

Summary

● Decentralised networks need incentives
● Reciprocation can support multi-hop interactions

– With a suitable proof of work
● Delivery receipts provide proof of work for

packet forwarding

32

Questions?

