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Cooperation in Decentralised Networks

1) Reciprocation

2) Cooperation over longer distances

3) Delivery receipts
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Background

● Peer-to-peer, mobile ad hoc networks
● Infrastructure provided by users
● Incentives to contribute resources
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Incentives

Three approaches:
● Micropayments
● Reputations
● Reciprocation
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Reciprocation

● “Payment in kind” between neighbours
● Doesn't require currency
● Doesn't require system-wide identities
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Requirements for Reciprocation

1. Authentication between neighbours

2. Expect a continuing relationship

3. Measure the benefit provided by neighbours
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Is Reciprocation Rational?

● Will selfish nodes reciprocate?
● Need to define selfishness
● Economics: utility-maximising behaviour
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Definition of Expected Utility

● Every action has a cost and one or more 
possible outcomes

● Every outcome has a benefit and a probability
● Expected benefit = mean benefit of all 

outcomes, weighted by probability

● Expected utility = expected benefit  cost
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Definition of Selfishness

● Given a choice of actions, a selfish node always 
chooses the action with the highest expected 
utility

● Maximise benefit for a given cost
● Minimise cost for a given benefit
● Costs and benefits are subjective
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A Selfish View of Reciprocation

● Assume neighbours are selfish
● Measure the benefit provided by each neighbour
● Benefit is attributable to the work done for the 

neighbour
● Benefit per unit of work done tells us the 

expected benefit of doing more work
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Prioritising Requests

● “A selfish node always chooses the action with 
the highest expected utility”

● Serve requests in decreasing order of expected 
utility, regardless of the order of arrival

– Cooperative neighbours get higher priority
– As a neighbour is served, its priority 

decreases
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Summary: Reciprocation

● Cooperation between immediate neighbours
● Only requires local information

– Decentralised
– Scalable

● Rational for selfish nodes to reciprocate
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Cooperation Over Longer Distances

● Reciprocation is local (single-hop)
● What about multi-hop interactions?

– Peer-to-peer search
– Packet forwarding
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Cooperation Over Longer Distances

● Break each multi-hop interaction into a series of 
single-hop interactions

● Each node:

– Provides a service to its upstream neighbour
– Requests a service from its downstream 

neighbour
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Proof of Work

● Need to measure the benefit provided by the 
downstream neighbour

● Final node creates a proof of work
● Each node verifies the proof and forwards it 

upstream
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Proof of Work

Request Request Request

Endpoint Endpoint
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Proof of Work

Request Request Request

Endpoint Endpoint

Proof Proof Proof
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Proof of Work

● What is a suitable proof of work?
● Depends on the nature of the work...
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Delivery Receipts

● Proof of work for multi-hop packet forwarding
● Based on one-way hash functions
● Endpoints share a secret authentication key
● Relays don't need any keys
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Delivery Receipts: Downstream

● Sender creates a unique secret for each packet
● The hash of the secret is attached to the packet
● Relays store the hash of the secret
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Delivery Receipts: Upstream

● Recipient generates the same secret and sends 
it as a receipt

● Relays hash the receipt and compare it to the 
stored value

● The receipt is forwarded back to the sender
● Each node has proof that its downstream 

neighbour forwarded the packet
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Delivery Receipts Example

packet,
hash (receipt)

Sender Recipient

packet,
hash (receipt)

packet,
hash (receipt)
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Delivery Receipts Example

Sender Recipient

receiptreceiptreceipt

packet,
hash (receipt)

packet,
hash (receipt)

packet,
hash (receipt)
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Security Requirements

● Relays must not be able to forge receipts

– No two packets have the same receipt
– Receipts don't leak information about the 

authentication key
– The hash function is 2nd-preimage-resistant

● Modifying the packet invalidates the receipt
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Implementation Using MACs

● Message authentication codes have all the 
required properties

● The receipt is the MAC of the packet
● The hash of the MAC is attached to the packet
● Relays don't verify the receipt as a MAC – they 

just hash it and compare it to the stored value
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Overhead of Delivery Receipts

● Bandwidth overhead: 20 bytes/packet
● Processing overhead: one hash/packet

● Storage overhead: 20 bytes/packet  RTT

– OK if packets are large (file transfer)
– May not be OK if packets are small and 

frequent (games/voice)
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Reliability

● What if a node forwards a packet that is later 
dropped downstream?

● The node has done work but can't prove it
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Measuring Reliability

● Measure the reliability of the downstream path
● Estimate the probability of getting a receipt
● “Expected benefit = mean benefit of all 

outcomes, weighted by probability”
● Forwarding on unreliable paths has lower 

expected utility
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Summary

● Decentralised networks need incentives
● Reciprocation can support multi-hop interactions

– With a suitable proof of work
● Delivery receipts provide proof of work for 

packet forwarding
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Questions?


