
Building a real-time
Grid protocol analyser

Jonathan Paisley
Department of Computing Science

The Grid

Wide-area distributed computing

Lots of funding

Network operators need to support it

Traffic dominated by bulk data transfer

Elephants and Mice

Multiple Elephants and Mice

Elephants and Mixed Mice

Elephants and Cipher Mice

?

Grid Monitoring

Other ISPs and the
Internet

Monitoring
point

Signal

Monitoring System

ISP Operator

Servers with
lots of storage

Grid Application Users

ISP's Network
Institution
Network

Approach

Interpret protocol to learn about
associated bulk connections

Report on transfer sizes

Be able to deal with mixed control-data
flows

DAG-based Network Monitor
Just a PC with special network monitoring card.
Example: 2.8 GHz dual Xeon, 2+ GB memory

Image Source: Endace Measurement Systems

Similarity to NIDS

NIDS = Network Intrusion Detection System

For example: Bro

Does protocol analysis (FTP, SMTP, etc)

Needs port-based filter

Full reassembly of every monitored flow

Too slow

Design Goals

Leverage DAG ring buffer architecture

Capable of processing at GigE line rate

Support full cleartext protocol analysis

Efficiently handle mixed control/data

Assumptions and Principles

TCP only

Applications under study not used maliciously

Minimise memory copies

Minimise heap allocation

Process packets as soon as possible

Single-threaded, data-driven

DAG Ring Buffer

Application
Acknowledged

Pointer

DAG Write
Pointer

Processed

Unprocessed

Not-yet-
written

DAG Ring Buffer

Application
Processed

Pointer

Application
Acknowledged
Pointer

DAG Write
Pointer

Processed

Unprocessed

Retained

Not-yet-
written

DAG Ring Buffer

Application
Processed

Pointer

Application
Acknowledged
Pointer

DAG Write
Pointer

Processed

Unprocessed

Retained

Not-yet-
written

Writing Protocol Analysers

Passive monitor sees both flow directions

Code to track state -> generate events

State machines can be complex

Threaded programming style is easier

 ... but runtime cost normally higher

ProtoThreads

Similar to co-routines/continuations

Implemented using a C switch statement

State maintained in a structure

Context switching by stack unwinding

Analyser Example
void AnalyserClass::AnalyserMain()
{
 // Read function id and num args
 READ(OrigFlow, 2);
 func_id = *(uint16_t*)data;
 READ(OrigFlow, 2);
 num_args = *(uint16_t*)data;

 for (i=0;i<num_args;i++) {
 READ(OrigFlow, 4);
 len = *(uint32_t*)data;
 // Read the argument, but we
 // only need the first 200 bytes
 READ_AND_SKIP(OrigFlow, len, 200);
 // ... process the argument
 }
 READ(RespFlow, 4);
 result_value = *(uint32_t*)data;
}

Analyser Example
void AnalyserClass::AnalyserMain()
{
 // Read function id and num args
 READ(OrigFlow, 2);
 func_id = *(uint16_t*)data;
 READ(OrigFlow, 2);
 num_args = *(uint16_t*)data;

 for (i=0;i<num_args;i++) {
 READ(OrigFlow, 4);
 len = *(uint32_t*)data;
 // Read the argument, but we
 // only need the first 200 bytes
 READ_AND_SKIP(OrigFlow, len, 200);
 // ... process the argument
 }
 READ(RespFlow, 4);
 result_value = *(uint32_t*)data;
}

May
block
here!

Scalability

Presently limited to single processor

Auxiliary flow tracing complicated by
concurrent processing

Could use retained packet scheme for all flows:
 gives extra 1-2 seconds buffering

Evaluation

Informal testing carried out during
development

Negligible load for ~900Mbps mixed control/
data SRB flow

Initial testing with larger number of
connections with flat-out* replay of IP header
traces ~10-15% load

* 250Mbps, 5000 new connections per second.

Encrypted Analysis Ideas

What can we know about encrypted traffic?

 Messages: (direction, size*, timing)

 Lack of messages (timeouts)

If we understand framing protocol:

 can get application-level messages

* with some bounded error

Requests and Responses

Client Server
Monitoring

Point

Look out for
associated

bulk data flow!

Approaches

Hidden Markov Models?

Naïve Bayesian Classifier?

Other work:

 SSH password typing analysis

 HTTPS request analysis by URL lengths

 Sideband attacks on encryption algorithms

Summary

Built (hopefully) fast system for real-time
protocol analysis work. Evaluation pending.

Support for efficient handling of mixed
control/data protocols.

Coding of protocol analysers simplified by
rich lightweight threaded interface.

Starting work on classifying and event
reporting of encrypted traffic.

