University of Duisburg-Essen, Institute for Experimental Mathematics

Policy Management
In the

Reliable Server Pooling
Architecture

Thomas Dreibholz

Institute for Experimental Mathematics
University of Duisburg-Essen, Germany
dreibh@exp-math.uni-essen.de

- http://www.exp-math.uni-essen.de/~dreibh

Table of Contents ‘

e Introduction - What is Reliable Server Pooling
 An Important RSerPool Task - Server Selection by Pool Policies

* Namespace and Policy Management — How to implement it efficiently?
* Requirements
* Qur Proposed Concept
* Performance Evaluation Results

e Conclusions and Outlook

Thomas Dreibholz's Reliable Server Pooling Page
http:/tdrwvww.exp-math.uni-essen.de/dreibholz/rserpool/

Policy Management in the Reliable Server Pooling Architecture A Thomas Dreibholz, MSN 2004 P.2

What is Reliable Server Pooling ‘
(RSerPool)?

B Some applications require high availability, e.qg.
— e-Commerce
— Medicine

B No single point of failure => multiple redundant servers for same service
(server pool) => RSerPool — A unified solution for server pool management

B Based on SCTP (Stream Control Transmission Protocol)
B Under Standardization by IETF RSerPool WG

B Important RSerPool task: Selection of servers ...
— Load Balancing, application-specific policies

B RSerPool architecture also usable for new applications:
— Mobility Management
— Distributed Computing

Policy Management in the Reliable Server Pooling Architecture A Thomas Dreibholz, MSN 2004 P.3

What is Reliable Server Pooling ‘
(RSerPool)?

)—U
=

B Terminology:
— Pool Element (PE): Server
— Pool
— PE ID: Unique ID of PE Name Servers
— Pool Handle: Unique ID of pool
— Namespace
— Name Server (NS)
— Pool User (PU): Client

Pool Elements

~
es!
N

B Protocols:
ASAP (Aggregate Server Access Protocol)
ENRP (Endpoint Name Resolution Protocol)

Pool Users

Policy Management in the Reliable Server Pooling Architecture A Thomas Dreibholz, MSN 2004 P.4

Server Selection and Pool Policies ‘

B How does a PU access a pool's service
— PU asks an arbitrary NS to select appropriate PEs of a certain pool
— PU may add them to its cache (optional) and selects one appropriate PE
— PU connects to selected PE

B How is a PE selected appropriately?
— Pool Policies:
« Weighted Round Robin (defined in RSerPool Internet Dratft)
» Least Used (defined in RSerPool Internet Draft)
« Weighted Random (will be defined in RSerPool Internet Draft)
« and many more; possibly service-specific extensions ...

B Many PEs in pools of many different policies ...
How can a namespace be managed efficiently?
(Internet Drafts only define policy behaviour, but not implementation ...)

Policy Management in the Reliable Server Pooling Architecture A Thomas Dreibholz, MSN 2004 P.5

Namespace Management - ‘
What are the requirements?

B For Pool Elements:
— (Re-)Registration, i.e. lookup (by PE ID) + insertion of PE entry
— Deregistration, i.e. removal of PE entry

B For Pool Users:
— Resolution of Pool Handle to set of PE entries, appropriately selected by
the pool's policy
B For Name Servers:

— Step-wise traversal of Namespace, e.g. get first 100 PE entries, continue
with next 100, and so on ...

B Main Observations:
1. for PEs: pool access by pool element ID
2. for PUs: pool access by selection order (depending on pool policy)

Policy Management in the Reliable Server Pooling Architecture A Thomas Dreibholz, MSN 2004 P.6

Our Namespace Management Concept ‘

. Namespace Pool #1 > Pool #2 _»
— Pool Set, sorted by Index Set Index Set 558
po OI handle Selection Set . Selection Set \
1 i
B Pool: . -

— PE Index Set

- sorted by: PE ID C C ’

— PE Selection Set RN / . ‘
« sorted by: ; | , | /
Sorting Order C 3/3 C

— Selection
Procedure e
B Quite straightforward, but ...

How can certain policies (Least Used, Weighted Round Robin) be
expressed as ,Sorting Order” and ,Selection Procedure*?

Policy Management in the Reliable Server Pooling Architecture A Thomas Dreibholz, MSN 2004 P.7

Defining ,Sorting Order” ‘

B Part 1: Policy-Specific Sorting Key
— Policy-dependent sorting key, e.g. load for Least Used
B Part 2: Sequence Number
— For every pool: pool-wide global sequence number
— For every PE entry: PE sequence number
— New PE entry or PE entry selected:
« PE's sequence number := pool's sequence number
* Increment pool's sequence number
— Note: A PE entry's sequence number is unique within its pool!

B Sorting Order := Sorting by composite key (Pol.-Spec. Key, PE Seq.No.)

B Usual Selection Procedure :=
— Simply take first PE entry from the Selection Set
— Update its sequence number + possibly its pol.-spec. key; re-insert it

Policy Management in the Reliable Server Pooling Architecture A Thomas Dreibholz, MSN 2004 P.8

Our Policy Realizations ‘

B IETF drafts define what policies mean, but not how to implement them!

B Least Used:
— Sorting Order: Sorting by (PE load, Seq.No.)
— Selection Procedure: Take first PE of the Selection Set
— Note: Seqg.No. ensures round robin selection between equal-loaded PEs

B Weighted Round Robin

— For each PE: Round Counter r, Virtual Counter v (Selections to go for current
round)

— Sorting Order: Sorting by (r, v (descending), Seq.No.)
— Selection Procedure: Take first PE of the Selection Set

B Weighted Random:
— For each PE: weight specifies proportional selection probability
— For each pool: WeightSum := Sum of all PEs' weights
— Sorting Order: PE ID only (ensures unique order)
— Selection Procedure: Random number r<fo...., Weightsum jcR eXxactly maps to one PE

Policy Management in the Reliable Server Pooling Architecture A Thomas Dreibholz, MSN 2004 P.9

Example 1: Least Used Policy ‘

B Sorting Order: Sorting by (PE load, Seq.No.)
B Selection Procedure: Simply take the first PE of the Selection Set
B Before Selection:

PE #7 load=10% seq=6
PE #2 load=10% seq=7
PE #11 load=44% seq=3

PE #7 will be selected next (lowest load and lowest seq.no. for this load)
B After Selection:

Policy LU

Pool ,,Example seq=8

PE #2 load=10% seq=7
PE #7 load=10% seq=8
PE #11 load=44% seq=3

Policy LU

Pool ,,Example s6q=9

— PE #2 will be next one, then again PE #7 and so on ...
— Seg-No. ensures round-robin selection between PEs of equal load!

Policy Management in the Reliable Server Pooling Architecture A Thomas Dreibholz, MSN 2004 P.10

Example 2: Weighted Round Robin . | ‘

B For each PE entry: | | | | |
Round Counter r, Virtual Counter v (Selections to go for current round)

B Sorting Order: Sorting by (Rd.Cntr, Vrt.Cntr. descending, Seq.No.)
B Selection Procedure: Take first PE

B Example:

. PE#5 | weight=2 = r=20 v=2 seq=6

POZ‘QQZ‘S’;RR PE #1 weight=1 =20 v=1 seq=7

PE #9 weight=1 r=20 v=1 seq=8

, PE #1 weight=1 r=20 v=1 seq=7

T PE #9 weight=1 r=20 v=1 seq=8

PE#5 [weight=2. | r=20 v=1 seq=9

Policy WRR ﬁE ﬁg _Welght=1 [:2 zj 22323

seq=11

PE #1 weight=1 v=1 seq=10

Next: PE #9, finally PE #5. End of WRR round 20.

Policy Management in the Reliable Server Pooling Architecture : A Thomas Dreibholz, MSN 2004 P.11

Example 3: Weighted Random ‘

B Sorting Order: Sorting by PE ID only (for unique identification)
B For each PE entry:

— value, i.e. its selection probability

— For each pool: Value Sum := Sum of all PEs' value settings
B Selection Procedure:

— Get random number refo...., ValueSum <R
— I maps to exactly one PE

B Example:

Policy WRAND PE#17 = weight=1 value=1
Pool ,,Example* seq=10 PE #8 weight=3 value=3
ValueSum=6 PE #11 weight=2 value=2

r=5.25 => [0, 1] for PE #17; [1, 4 for PE #8; [4, 6] for PE #11
=> Selection of PE #11

Policy Management in the Reliable Server Pooling Architecture A Thomas Dreibholz, MSN 2004 P.12

Implementation ‘

B \We use sets for Pools, Index and Selection, but ...
... How should we implement a set?

B Possible Data Structures:
— Linear List
— Unbalanced Binary Tree
— Balanced Binary Tree (Red-Black)
— Randomized Binary Tree (Treap)

Bl Question now:
— Which is most efficient?
— What is average namespace operation runtime on ,standard PC*
hardware (AMD Athlon 1.3 GHz)?

=> Performance Evaluation!

Policy Management in the Reliable Server Pooling Architecture A Thomas Dreibholz, MSN 2004 P.13

Performance Evaluation ‘

B Transactions Scenario Weighted Round Robin Policy
— Registrations: 1 g RedBlack T1e8 e
— Reregistrations: 30 é 8O
— PE Selections: 5 & Degradation to Linea%r List
— Traversal: 10 § 00 [N AT
= ‘
B Avg. Operation Runtime: Yy —— s
10 pools S ‘ ‘ iy |
2 to 202 PEs per pool zg
0
0 50 100 150 200
. RGSUltS: Pool Elements per Pool

— Avg. runtime less than 20us for 10 pools of 202 PEs (balanced trees)!
— Unbalanced trees unsuitable (insertion/removal too systematic)

Policy Management in the Reliable Server Pooling Architecture A Thomas Dreibholz, MSN 2004 P.14

Performance Evaluation (Scalability) ‘

B Distributed Computing Scen. Weighted Round Robin Policy and Weighted Random Policy
: : 70 . . . , -
B Operations Ratio: Red_Black Trae WHR ——arm e]
& Reg|strat|ons l 60 - Treap, WRAND ewemeees | ,‘g-..'.‘..'.'....\}";";‘;:i,;‘-\“-.-.-.-:‘_‘T‘.' i

Red-Black Tree, WRAND g

¥
.
.
Y
o
.
.
.
.
it o5
ot
.
.
.
.
.
.
.
o

— Reregistrations: 300
— PE Selections: 5000
— Traversal; 1

B Avg. Operation Runtime:
1 pool
10 to 100010 PEs

Average Runtime per Operation [Hs]

0 20000 40000 60000 80000 100000
. RGSUltS: Total Amount of Pool Elements

— Acceptable runtime even for very large pools (< 70us for 100010 PES)!

Policy Management in the Reliable Server Pooling Architecture A Thomas Dreibholz, MSN 2004 P.15

Conclusions & Outlook ‘

B Namespace and Policy Management is basic task of RSerPool
— Must be efficient -> Large pools (e.g. for distributed computing)
— Must be extendable -> New policies for new applications

B Proposed Solution: Reduction of problem to ...
— Definition of policy-specific sorting orders and selection procedures
— Storage of sorted sets
— Efficiency shown by performance evaluation => best for balanced trees

B Current Status
— Implementation of Namespace and Policy Management as C Library
— Usage for our OMNeT++ RSerPool simulation model rspsim
B Future Plans
— Usage of our library also in our Open Source RSerPool Prototype rsplib
— Full implementation of the RSerPool standard by 09/2004.

Policy Management in the Reliable Server Pooling Architecture A Thomas Dreibholz, MSN 2004 P.16

Any Questions? ‘

Prototype

Project Homepage:
http://tdrwww.exp-math.uni-essen.de/dreibholz/rserpool/

Thomas Dreibholz, dreibh@exp-math.uni-essen.de

Policy Management in the Reliable Server Pooling Architecture A Thomas Dreibholz, MSN 2004 P.17

