
Thomas Dreibholz
Institute for Experimental Mathematics
University of Duisburg-Essen, Germany
dreibh@exp-math.uni-essen.de

http://www.exp-math.uni-essen.de/~dreibh

University of Duisburg-Essen, Institute for Experimental Mathematics

Policy Management
in the

Reliable Server Pooling
Architecture

Thomas Dreibholz, MSN 2004Policy Management in the Reliable Server Pooling Architecture P.2

Table of Contents

● Introduction - What is Reliable Server Pooling
● An Important RSerPool Task - Server Selection by Pool Policies
● Namespace and Policy Management – How to implement it efficiently?

● Requirements
● Our Proposed Concept
● Performance Evaluation Results

● Conclusions and Outlook

Thomas Dreibholz's Reliable Server Pooling Page
http://tdrwww.exp-math.uni-essen.de/dreibholz/rserpool/

Thomas Dreibholz, MSN 2004Policy Management in the Reliable Server Pooling Architecture P.3

What is Reliable Server Pooling
(RSerPool)?

 Some applications require high availability, e.g.
– e-Commerce
– Medicine
– ...

 No single point of failure => multiple redundant servers for same service
(server pool) => RSerPool – A unified solution for server pool management

 Based on SCTP (Stream Control Transmission Protocol)

 Under Standardization by IETF RSerPool WG

 Important RSerPool task: Selection of servers ...
– Load Balancing, application-specific policies

 RSerPool architecture also usable for new applications:
– Mobility Management
– Distributed Computing

Thomas Dreibholz, MSN 2004Policy Management in the Reliable Server Pooling Architecture P.4

What is Reliable Server Pooling
(RSerPool)?

 Terminology:
– Pool Element (PE): Server
– Pool
– PE ID: Unique ID of PE
– Pool Handle: Unique ID of pool
– Namespace
– Name Server (NS)
– Pool User (PU): Client

 Protocols:
ASAP (Aggregate Server Access Protocol)

ENRP (Endpoint Name Resolution Protocol)

Thomas Dreibholz, MSN 2004Policy Management in the Reliable Server Pooling Architecture P.5

Server Selection and Pool Policies

 How does a PU access a pool's service
– PU asks an arbitrary NS to select appropriate PEs of a certain pool
– PU may add them to its cache (optional) and selects one appropriate PE
– PU connects to selected PE

 How is a PE selected appropriately?
– Pool Policies:

• Weighted Round Robin (defined in RSerPool Internet Draft)
• Least Used (defined in RSerPool Internet Draft)
• Weighted Random (will be defined in RSerPool Internet Draft)
• and many more; possibly service-specific extensions ...

 Many PEs in pools of many different policies ...
How can a namespace be managed efficiently?
(Internet Drafts only define policy behaviour, but not implementation ...)

Thomas Dreibholz, MSN 2004Policy Management in the Reliable Server Pooling Architecture P.6

Namespace Management -
What are the requirements?

 For Pool Elements:
– (Re-)Registration, i.e. lookup (by PE ID) + insertion of PE entry
– Deregistration, i.e. removal of PE entry

 For Pool Users:
– Resolution of Pool Handle to set of PE entries, appropriately selected by

the pool's policy

 For Name Servers:
– Step-wise traversal of Namespace, e.g. get first 100 PE entries, continue

with next 100, and so on ...

 Main Observations:
1. for PEs: pool access by pool element ID
2. for PUs: pool access by selection order (depending on pool policy)

Thomas Dreibholz, MSN 2004Policy Management in the Reliable Server Pooling Architecture P.7

Our Namespace Management Concept

 Namespace:
– Pool Set, sorted by

pool handle

 Pool:
– PE Index Set

• sorted by: PE ID
– PE Selection Set

• sorted by:
Sorting Order

– Selection
Procedure

 Quite straightforward, but ...
How can certain policies (Least Used, Weighted Round Robin) be
expressed as „Sorting Order“ and „Selection Procedure“?

Thomas Dreibholz, MSN 2004Policy Management in the Reliable Server Pooling Architecture P.8

Defining „Sorting Order“

 Part 1: Policy-Specific Sorting Key
– Policy-dependent sorting key, e.g. load for Least Used

 Part 2: Sequence Number
– For every pool: pool-wide global sequence number
– For every PE entry: PE sequence number
– New PE entry or PE entry selected:

• PE's sequence number := pool's sequence number
• Increment pool's sequence number

– Note: A PE entry's sequence number is unique within its pool!

 Sorting Order := Sorting by composite key (Pol.-Spec. Key, PE Seq.No.)

 Usual Selection Procedure :=
– Simply take first PE entry from the Selection Set
– Update its sequence number + possibly its pol.-spec. key; re-insert it

Thomas Dreibholz, MSN 2004Policy Management in the Reliable Server Pooling Architecture P.9

Our Policy Realizations

 IETF drafts define what policies mean, but not how to implement them!
 Least Used:

– Sorting Order: Sorting by (PE load, Seq.No.)
– Selection Procedure: Take first PE of the Selection Set
– Note: Seq.No. ensures round robin selection between equal-loaded PEs

 Weighted Round Robin
– For each PE: Round Counter r, Virtual Counter v (Selections to go for current

round)
– Sorting Order: Sorting by (r, v (descending), Seq.No.)
– Selection Procedure: Take first PE of the Selection Set

 Weighted Random:
– For each PE: weight specifies proportional selection probability
– For each pool: WeightSum := Sum of all PEs' weights
– Sorting Order: PE ID only (ensures unique order)
– Selection Procedure: Random number exactly maps to one PEr∈{0, ... ,WeightSum }⊂ℝ

Thomas Dreibholz, MSN 2004Policy Management in the Reliable Server Pooling Architecture P.10

Example 1: Least Used Policy

 Sorting Order: Sorting by (PE load, Seq.No.)

 Selection Procedure: Simply take the first PE of the Selection Set

 Before Selection:

PE #7 will be selected next (lowest load and lowest seq.no. for this load)

 After Selection:

– PE #2 will be next one, then again PE #7 and so on ...
– Seq-No. ensures round-robin selection between PEs of equal load!

Pool „Example“
PE #7 load=10% seq=6
PE #2 load=10% seq=7

PE #11 load=44% seq=3

Policy LU
seq=8

Pool „Example“
PE #2 load=10% seq=7
PE #7 load=10% seq=8

PE #11 load=44% seq=3

Policy LU
seq=9

Thomas Dreibholz, MSN 2004Policy Management in the Reliable Server Pooling Architecture P.11

Example 2: Weighted Round Robin

 For each PE entry:
Round Counter r, Virtual Counter v (Selections to go for current round)

 Sorting Order: Sorting by (Rd.Cntr, Vrt.Cntr. descending, Seq.No.)

 Selection Procedure: Take first PE

 Example:

Next: PE #9, finally PE #5. End of WRR round 20.

Pool „Example“
PE #5 weight=2 r=20 v=2 seq=6
PE #1 weight=1 r=20 v=1 seq=7
PE #9 weight=1 r=20 v=1 seq=8

Pool „Example“
PE #1 weight=1 r=20 v=1 seq=7
PE #9 weight=1 r=20 v=1 seq=8
PE #5 weight=2 r=20 v=1 seq=9

Pool „Example“
PE #9 weight=1 r=20 v=1 seq=8
PE #5 weight=2 r=20 v=1 seq=9
PE #1 weight=1 r=21 v=1 seq=10

Policy WRR
seq=9

Policy WRR
seq=10

Policy WRR
seq=11

Thomas Dreibholz, MSN 2004Policy Management in the Reliable Server Pooling Architecture P.12

Example 3: Weighted Random

 Sorting Order: Sorting by PE ID only (for unique identification)

 For each PE entry:
– value, i.e. its selection probability
– For each pool: Value Sum := Sum of all PEs' value settings

 Selection Procedure:
– Get random number
– r maps to exactly one PE

 Example:

r=5.25 => [0, 1[for PE #17; [1, 4[for PE #8; [4, 6] for PE #11
=> Selection of PE #11

r∈{0, ... ,ValueSum }⊂ℝ

PE #17 weight=1 value=1
Pool „Example“ PE #8 weight=3 value=3

PE #11 weight=2 value=2

Policy WRAND
seq=10

ValueSum=6

Thomas Dreibholz, MSN 2004Policy Management in the Reliable Server Pooling Architecture P.13

Implementation

 We use sets for Pools, Index and Selection, but ...
... How should we implement a set?

 Possible Data Structures:
– Linear List
– Unbalanced Binary Tree
– Balanced Binary Tree (Red-Black)
– Randomized Binary Tree (Treap)

 Question now:
– Which is most efficient?
– What is average namespace operation runtime on „standard PC“

hardware (AMD Athlon 1.3 GHz)?

=> Performance Evaluation!

Thomas Dreibholz, MSN 2004Policy Management in the Reliable Server Pooling Architecture P.14

Performance Evaluation

 Transactions Scenario

 Operations Ratio:
– Registrations: 1
– Reregistrations: 30
– PE Selections: 5
– Traversal: 10

 Avg. Operation Runtime:
10 pools
2 to 202 PEs per pool

 Results:
– Avg. runtime less than 20µs for 10 pools of 202 PEs (balanced trees)!
– Unbalanced trees unsuitable (insertion/removal too systematic)

Degradation to Linear List

Balanced Trees

Thomas Dreibholz, MSN 2004Policy Management in the Reliable Server Pooling Architecture P.15

Performance Evaluation (Scalability)

 Distributed Computing Scen.

 Operations Ratio:
– Registrations: 1
– Reregistrations: 300
– PE Selections: 5000
– Traversal: 1

 Avg. Operation Runtime:
1 pool
10 to 100010 PEs

 Results:
– Acceptable runtime even for very large pools (< 70µs for 100010 PEs)!

Thomas Dreibholz, MSN 2004Policy Management in the Reliable Server Pooling Architecture P.16

Conclusions & Outlook

 Namespace and Policy Management is basic task of RSerPool
– Must be efficient -> Large pools (e.g. for distributed computing)
– Must be extendable -> New policies for new applications

 Proposed Solution: Reduction of problem to ...
– Definition of policy-specific sorting orders and selection procedures
– Storage of sorted sets
– Efficiency shown by performance evaluation => best for balanced trees

 Current Status
– Implementation of Namespace and Policy Management as C Library
– Usage for our OMNeT++ RSerPool simulation model rspsim

 Future Plans
– Usage of our library also in our Open Source RSerPool Prototype rsplib
– Full implementation of the RSerPool standard by 09/2004.

Thomas Dreibholz, MSN 2004Policy Management in the Reliable Server Pooling Architecture P.17

Any Questions?

Project Homepage:
http://tdrwww.exp-math.uni-essen.de/dreibholz/rserpool/

Thomas Dreibholz, dreibh@exp-math.uni-essen.de

