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What is Reliable Server Pooling 
(RSerPool)?

 Some applications require high availability, e.g.
– e-Commerce
– Medicine
– ...

 No single point of failure => multiple redundant servers for same service 
(server pool) => RSerPool – A unified solution for server pool management

 Based on SCTP (Stream Control Transmission Protocol)

 Under Standardization by IETF RSerPool WG

 Important RSerPool task: Selection of servers ...
– Load Balancing, application-specific policies

 RSerPool architecture also usable for new applications:
– Mobility Management
– Distributed Computing
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What is Reliable Server Pooling 
(RSerPool)?

 Terminology:
– Pool Element (PE): Server
– Pool
– PE ID: Unique ID of PE
– Pool Handle: Unique ID of pool
– Namespace
– Name Server (NS)
– Pool User (PU): Client

 Protocols:
ASAP (Aggregate Server Access Protocol)

ENRP (Endpoint Name Resolution Protocol)



Thomas Dreibholz, MSN 2004Policy Management in the Reliable Server Pooling Architecture P.5

Server Selection and Pool Policies

 How does a PU access a pool's service
– PU asks an arbitrary NS to select appropriate PEs of a certain pool
– PU may add them to its cache (optional) and selects one appropriate PE
– PU connects to selected PE

 How is a PE selected appropriately?
– Pool Policies:

• Weighted Round Robin (defined in RSerPool Internet Draft)
• Least Used  (defined in RSerPool Internet Draft)
• Weighted Random  (will be defined in RSerPool Internet Draft)
• and many more; possibly service-specific extensions ...

 Many PEs in pools of many different policies ...
How can a namespace be managed efficiently?
(Internet Drafts only define policy behaviour, but not implementation ...)
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Namespace Management -
What are the requirements?

 For Pool Elements:
– (Re-)Registration, i.e. lookup (by PE ID) + insertion of PE entry
– Deregistration, i.e. removal of PE entry

 For Pool Users:
– Resolution of Pool Handle to set of PE entries, appropriately selected by 

the pool's policy

 For Name Servers:
– Step-wise traversal of Namespace, e.g. get first 100 PE entries, continue 

with next 100, and so on ...

 Main Observations:
1. for PEs: pool access by pool element ID
2. for PUs: pool access by selection order (depending on pool policy)



Thomas Dreibholz, MSN 2004Policy Management in the Reliable Server Pooling Architecture P.7

Our Namespace Management Concept

 Namespace:
– Pool Set, sorted by

pool handle

 Pool:
– PE Index Set

• sorted by: PE ID
– PE Selection Set

• sorted by:
Sorting Order

– Selection
Procedure

 Quite straightforward, but ...
How can certain policies (Least Used, Weighted Round Robin) be
expressed as „Sorting Order“ and „Selection Procedure“?
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Defining „Sorting Order“

 Part 1: Policy-Specific Sorting Key
– Policy-dependent sorting key, e.g. load for Least Used

 Part 2: Sequence Number
– For every pool: pool-wide global sequence number
– For every PE entry: PE sequence number
– New PE entry or PE entry selected:

• PE's sequence number := pool's sequence number
• Increment pool's sequence number

– Note: A PE entry's sequence number is unique within its pool!

 Sorting Order := Sorting by composite key (Pol.-Spec. Key, PE Seq.No.)

 Usual Selection Procedure :=
– Simply take first PE entry from the Selection Set
– Update its sequence number + possibly its pol.-spec. key; re-insert it
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Our Policy Realizations

 IETF drafts define what policies mean, but not how to implement them!
 Least Used:

– Sorting Order: Sorting by (PE load, Seq.No.)
– Selection Procedure: Take first PE of the Selection Set
– Note: Seq.No. ensures round robin selection between equal-loaded PEs

 Weighted Round Robin
– For each PE: Round Counter r, Virtual Counter v (Selections to go for current 

round)
– Sorting Order: Sorting by (r,   v (descending),   Seq.No.)
– Selection Procedure: Take first PE of the Selection Set

 Weighted Random:
– For each PE: weight specifies proportional selection probability
– For each pool: WeightSum := Sum of all PEs' weights
– Sorting Order: PE ID only (ensures unique order)
– Selection Procedure: Random number                            exactly maps to one PEr∈{0, ... ,WeightSum }⊂ℝ
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Example 1: Least Used Policy

 Sorting Order: Sorting by (PE load, Seq.No.)

 Selection Procedure: Simply take the first PE of the Selection Set

 Before Selection:

PE #7 will be selected next (lowest load and lowest seq.no. for this load)

 After Selection:

– PE #2 will be next one, then again PE #7 and so on ...
– Seq-No. ensures round-robin selection between PEs of equal load!

Pool „Example“
PE #7 load=10% seq=6
PE #2 load=10% seq=7

PE #11 load=44% seq=3

Policy LU
seq=8

Pool „Example“
PE #2 load=10% seq=7
PE #7 load=10% seq=8

PE #11 load=44% seq=3

Policy LU
seq=9
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Example 2: Weighted Round Robin

 For each PE entry:
Round Counter r, Virtual Counter v (Selections to go for current round)

 Sorting Order: Sorting by (Rd.Cntr, Vrt.Cntr. descending, Seq.No.)

 Selection Procedure: Take first PE

 Example:

Next: PE #9, finally PE #5. End of WRR round 20.

Pool „Example“
PE #5 weight=2 r=20 v=2 seq=6
PE #1 weight=1 r=20 v=1 seq=7
PE #9 weight=1 r=20 v=1 seq=8

Pool „Example“
PE #1 weight=1 r=20 v=1 seq=7
PE #9 weight=1 r=20 v=1 seq=8
PE #5 weight=2 r=20 v=1 seq=9

Pool „Example“
PE #9 weight=1 r=20 v=1 seq=8
PE #5 weight=2 r=20 v=1 seq=9
PE #1 weight=1 r=21 v=1 seq=10

Policy WRR
seq=9

Policy WRR
seq=10

Policy WRR
seq=11
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Example 3: Weighted Random

 Sorting Order: Sorting by PE ID only (for unique identification)

 For each PE entry:
– value, i.e. its selection probability 
– For each pool: Value Sum := Sum of all PEs' value settings

 Selection Procedure:
– Get random number 
– r maps to exactly one PE

 Example:

r=5.25  =>   [0, 1[ for PE #17;   [1, 4[ for PE #8;   [4, 6] for PE #11
=>   Selection of PE #11

r∈{0, ... ,ValueSum }⊂ℝ

PE #17 weight=1 value=1
Pool „Example“ PE #8 weight=3 value=3

PE #11 weight=2 value=2

Policy WRAND
seq=10

ValueSum=6
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Implementation

 We use sets for Pools, Index and Selection, but ...
... How should we implement a set?

 Possible Data Structures:
– Linear List
– Unbalanced Binary Tree
– Balanced Binary Tree (Red-Black)
– Randomized Binary Tree (Treap)

 Question now:
– Which is most efficient?
– What is average namespace operation runtime on „standard PC“

hardware (AMD Athlon 1.3 GHz)?

=> Performance Evaluation!
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Performance Evaluation

 Transactions Scenario

 Operations Ratio:
– Registrations:   1
– Reregistrations: 30
– PE Selections:   5
– Traversal: 10

 Avg. Operation Runtime:
10 pools
2 to 202 PEs per pool

 Results:
– Avg. runtime less than 20µs for 10 pools of 202 PEs (balanced trees)!
– Unbalanced trees unsuitable (insertion/removal too systematic)

Degradation to Linear List

Balanced Trees
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Performance Evaluation (Scalability)

 Distributed Computing Scen.

 Operations Ratio:
– Registrations:            1
– Reregistrations:    300
– PE Selections:    5000
– Traversal:  1

 Avg. Operation Runtime:
1 pool
10 to 100010 PEs

 Results:
– Acceptable runtime even for very large pools (< 70µs for 100010 PEs)!
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Conclusions & Outlook

 Namespace and Policy Management is basic task of RSerPool
– Must be efficient -> Large pools (e.g. for distributed computing)
– Must be extendable -> New policies for new applications

 Proposed Solution: Reduction of problem to ...
– Definition of policy-specific sorting orders and selection procedures
– Storage of sorted sets
– Efficiency shown by performance evaluation => best for balanced trees

 Current Status
– Implementation of Namespace and Policy Management as C Library
– Usage for our OMNeT++ RSerPool simulation model rspsim

 Future Plans
– Usage of our library also in our Open Source RSerPool Prototype rsplib
– Full implementation of the RSerPool standard by 09/2004.
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Any Questions?

Project Homepage:
http://tdrwww.exp-math.uni-essen.de/dreibholz/rserpool/

Thomas Dreibholz, dreibh@exp-math.uni-essen.de


