Constructing Low Latency Overlay Multicast Trees

Su-Wei, Tan Gill Waters John Crawford
{swt3,a.g.waters,j.s.crawford}@kent.ac.uk
Computing Laboratory
University of Kent, UK
Outline

- Introduction
- The Problem
- Proposal
- Simulation Results
Introduction

Efficient delivery trees for delay-sensitive point-to-multipoint applications
- Live webcasting, Audio/video conferencing
- Potentially have large number of participants

Multicasting: provides efficient data delivery mechanism
- Spare global network layer infrastructure support

\textbf{Application Layer Multicast (ALM)}
Application Layer Multicast (ALM)

- Multicast functionalities such as packet replication are implemented directly at end systems.
- End systems are organised into a logical topology – overlay.
 - Overlay edges are unicast tunnels between the end systems.
ALM Examples

IP Multicast

ALM Solutions
ALM Challenges

- Quality of data delivery: stress & stretch
- Limited topology information
- Capacity constraint & heterogeneity
 - Degree constrained overlay
- Robustness
Problem Statement

- Overlay network: $G(V,E)$ where V is the set of end systems (including source), and $E = V \times V$ is the set of edges. Each node is degree-bounded due to its available capacity.

- Minimum maximum-latency degree-bounded spanning tree:
 - Find a spanning tree, T of G rooted at the source, s satisfying the degree bound at each node, such that the maximum delay from s to the receivers is minimised.

- NP-hard!
Motivation: The Greedy Problem

- Minimise the delay from the tree root
 - Every node tries to get as close as possible to the root

- (delay optimisation) + (Lack of complete topology information) + (degree constraint)
 - Greedy problem
Greedy Problem: Example

x can never connect to s when s has already saturated with children

A better configuration
Greedy Problem: Possible Solution

- Organise nodes (approximately) based on their relative position in the underlying network
 - Can be viewed as a minimum spanning tree problem where edge delay = cost
- BUT low cost tree ≠ low delay tree
Delay-cost trade-offs

Cost = 9
Max. Delay = 5

Cost = 7
Max. Delay = 7
Proposal

- Create a overlay mesh which consists of:
 - Low cost backbone
 - Additional links to reduce the delay

Questions

- How to create the overlay?
- How to get the degree-bounded delivery tree?
A. Creating the overlay

- Start with a randomly connected mesh
- Every node (except root) performs periodically refinement
 - Add/delete links within the degree bound
 - Prioritise links in the backbone over links in the delivery tree
 - Each operation involves only nodes engaged in the process ➔ No global coordination is needed
B. Getting the delivery tree

- Path-vector routing protocol
 - Using s as the sole destination
- Reverse path forwarding to get the tree rooted at s
Solution Properties

- Decentralised
 - Use partial topology information
 - Scalable

- Adaptation
 - Adapt to changes in membership & underlying network conditions

- Feasible
 - Degree-constrained is enforced throughout the multicast session
Simulation Experiments

- 10100-node transit-stub topology generated by GT-ITM topology generator
- Overlay members: 32 - 1024
- Max. out-degree: uniformly distributed between 2 to 10
Comparisons

- Compact Tree algorithm (JSAC’02)
 - Centralised greedy heuristic

- Banerjee et al. scheme (Infocom’03)
 - Flexible tree-reconfiguration for nodes within 2-level of each another
 - Our previous study shows that it performs better than several other ALM protocols, e.g. switch-trees, HostCast, NICE, TBCP.
Maximum session delay penalty: RMP

Out-degree: uniformly distributed between 2 and 10

- Banerjee et al.
- MeshTree
- Centralised CPT

Group Size

(a)
Maximum Link Stress

Out-degree: uniformly distributed between 2 and 10

Centralised CPT
MeshTree
Banerjee et al.
Average Link Stress

Out-degree: uniformly distributed between 2 and 10

Centralised CPT
Banerjee et al.
MeshTree
Tree Cost Ratio

Out-degree: uniformly distributed between 2 and 10

Centralised CPT
Banerjee et al.
MeshTree
Convergence

Group Size: 1024, Improvement Period: 30 sec

Backbone Tree Cost Ratio

Delivery Tree: RMP

Delivery Tree: RAP

All Members Joined (50 sec)