
Naming & Identification
in the Internet

R. Atkinson & S. Bhatti
UCL Computer Science

July 2004

2

Existing Name Types

• IP Address (1.2.3.4)

• IP Subnet (1.2.3.0/26)

• Domain Name (host.cs.ucl.ac.uk)

• Communication End-Point or “Socket”
(TCP port 23 @ host.cs.ucl.ac.uk)

• Mailbox (a.lastname@cs.ucl.ac.uk)

• URL (http://www.cs.ucl.ac.uk/index.html)

3

Quick History

• In the beginning were Addresses

• Then hosts.txt appeared, creating a flat namespace

• (example hostname: ucl-cs-host)

• Needed heirarchy as network grew in size

• Which led to the Domain Name System (DNS)

• (example hostname: host.cs.ucl.ac.uk)

4

Domain Name System
• Originally a simple mapping service between Fully-

Qualified Domain-Name and Address (examples: A,
PTR)

• Modern DNS usage examples:

• explicitly to provide service location information
(example: MX, KX, SRV)

• implicitly to create service names via the CNAME
record (e.g. ftp.cs.ucl.ac.uk)

• DNS overloading keeps increasing with many other
directory services being added over time

• Mutation more than Evolution

5

Addresses
• Early application designers did not have DNS

• hence BSD’s Sockets API used raw IP addresses,

• hence IP addresses were embedded in many applications
and application protocols

• Class-full nature and ad-hoc allocation practices
created excessive routing table growth rate, so
switched to class-less addressing (CIDR) to
minimise routing table growth rate and increase
utilisation efficiency

• Network Address Translation (NAT) came into
common use for various reasons

6

So what’s wrong ?

• Example: DNS overloaded to implicitly name a
service, rather than a host (e.g. www.cnn.com)

• Most networking APIs lack appropriate object
types in their interfaces

• Community failed to use the right abstractions --
mostly for historical reasons

• Example: Modifying the Address because the
device moved ought not have any impact on
applications

7

What to do ?

• Revisit the naming architecture of the Internet,
applying all we know today that was not known
originally

• Consider adding additional namespaces

• Service Names

• Network-Layer host identifiers (not used for routing)

• Others also, perhaps

8

Architectural
Implications

• Addresses resume their original limited role --
basically used for routing only.

• Transport protocols and Application protocols
substitute more appropriate identifiers for
addresses

• Might need to use raw addresses in a special instances
(e.g. control messages)

• Networking APIs need to change to use proper
abstractions

9

Strawman Approach

• Add a new ID resource-record to DNS

• One-way mapping from FQDN to ID

• Can use PTR lookup to get from Address to ID

• Use DNSsec to authenticate (FQDN->ID) mapping

• Secure Dynamic DNS Update to modify A records

• Add ICMP extensions

• to obtain a FQDN hint from any remote system, etc.

• Modify other protocols to use ID, not address

10

Deployment

• Strawman described above is obviously partly-
baked, not fully sorted out.

• Numerous obstacles exist to deploying a clean
architecture

• Nonetheless worthwhile to devise a clean
architecture

• Useful to think about which architectural
approaches might be easier/harder to deploy

11

Benefits: Routing
• Improved Internet routing system

• Mobility is easy because transport-protocol state and
application state bind to host’s identity, not address

• Multi-homing is easy because transport-protocol state
and application state bind to host’s identity, not address

• DFZ not impacted by multi-homed sites

• Changes to addressing/routing system do not
impact host identity or user applications

• In-transit address modifications (e.g. NAT) do not have
any impact outside the routing system

12

Benefits: Security
• Eliminates need to use unauthenticated addresses

as host identifiers

• Instead, use new authenticatible host identity

• Facilitates deployment of cryptographic security
(e.g. IPsec, Routing Authentication)

• IPsec would work through a NAT trivially, without
needing special consideration

• IPsec would naturally work with truly mobile hosts or
even mobile networks

• Facilitates improved firewalls

13

Benefits: Other

• By adding Service Names explicitly, service location
should be much easier

• By reducing overloading of semantics, the
architecture becomes much cleaner

• By having a cleaner architecture, the programming
APIs can use better interface objects

• In turn, this should make application development
easier and faster

14

Questions ?

