
Tweaking TCP’s Timers

Kieran Mansley
Laboratory for Communication Engineering

Context

• Researching user-level TCP for my PhD.

• Focusing on how to implement it efficiently
at user level, particularly in a server room.

• Timers are a small but interesting part of
that.

Historical Context

• TCP was first specified in the early 1980s

• OS support for time was poor and costly

• Networks were slower, so time intervals longer.

• Portability very important, all leads to...

TCP has weak requirements of the OS

What are TCP Timers?

• Not measuring time (usually).

• Enable an action to be performed later.

• Mostly used to deal with inactivity:

• Timer set when activity is expected

• Timer cancelled when activity occurs

• If timer expires, recovery action is executed.

Delayed
Acknowledgments

• TCP sends acks for reliability and flow
control.

• Can either be a separate packet or
piggyback on a data packet.

• Acks are delayed to encourage piggybacking.

• Timer used to ensure delay is limited.

Delayed Ack Illustration

Timer Ticks Illustrated

Timer Techniques

• How to implement timers?

• Trad. scheme based on 100ms clock ticks

• Maintain flags in per-connection state.

• Each tick, check list of connections for timers.

• Modern scheme based on hashed
hierarchical timing wheel.

• Ordered list of timers, use hardware clock to
trigger the check and schedule operation.

Problems

• Inaccurate delay of acks: from 0ms to 200ms

• List of connections must be searched each
clock tick.

• A busy connection will still regularly send
separate ack packets.

Potential Solution (i)

• Change profile of delay:

Potential Solution (ii)

• Use two timer buckets to achieve delay
limits:

Target Bucket A

Target Bucket B

Empty Bucket B

Empty Bucket A

x x+100 x+200 x+300 x+400

x x+100 x+200 x+300 x+400
Min

Max

time (ms)

time (ms)

Potential Solution (iii)

• Implementation of buckets:

• Lazy switch avoids need for scheduling.

• Timer execution when blocking op encountered.

• Data thread used for active connections.

• Time checking done using “rtdsc” counter.

Potential Solution (iv)

• Handle timers for active connections from
the data thread.

• Removes need for locking, other than for
handing connections between threads.

• No list searching, but...

• Increased set/clear timer complexity.

CPU Usage Tradeoff

 0.0001

 0.001

 0.01

 0.1

 1

 10

 10 100 1000 10000 100000

C
P

U
 u

sa
ge

 (%
)

Connection list size

CPU to iterate list (%) measured inline
0.0000754x + 0.0001191

CPU to iterate list (%) measured with ’time’
0.0000692x + 0.001060

CPU for bucket scheme (%)

Summary

• Timers at user level can benefit from a
different solution.

• Change the way timers are implemented to:

• Give guaranteed lower, reduced upper bound;

• Avoid locking by checking timers in data thread.

• Minor performance issue for current TCPs

• May be more important in future.

Questions/Comments?

Kieran Mansley
kjm25@cam.ac.uk

http://www-lce.eng.cam.ac.uk/~kjm25

Available as technical report CUED/F-INFENG/TR.487

