
Crowfoot: a verifier for
higher-order store programs?

Nathaniel Charlton Ben Horsfall Bernhard Reus

Department of Informatics, University of Sussex
{n.a.charlton,b.g.horsfall,bernhard}@sussex.ac.uk

Abstract. We present Crowfoot, an automatic verification tool for im-
perative programs that manipulate procedures dynamically at runtime;
these programs use a heap that can store not only data but also code
(commands or procedures). Such heaps are often called higher-order
store, and allow for instance the creation of new recursions on the fly. One
can use higher-order store to model phenomena such as runtime loading
and unloading of code, runtime update of code and runtime code gener-
ation. Crowfoot’s assertion language, based on separation logic, features
nested Hoare triples which describe the behaviour of procedures stored
on the heap. The tool addresses complex issues like deep frame rules
and recursion through the store, and is the first verification tool based
on recent developments in the mathematical foundations of Hoare logics
with nested triples.

1 Introduction

Dynamic memory that can store not only data but also code is often called
higher-order store. Such memory allows program code to change during execution
with the manipulation performed by the program itself. For instance, one may be
able to write code onto a mutable heap, invoke it, manipulate it, and then invoke
it again later when needed. With higher-order store one can model phenomena
such as runtime loading and unloading of code — as performed in plugin systems,
operating system kernels and dynamic software update systems — and runtime
code generation.

Logics with nested triples [17, 11], where assertions can contain Hoare triples
which describe the behaviour of code stored on the program’s heap, have been
proposed as a way to reason modularly about higher-order store programs. Re-
cent developments [17, 18] have provided solid theoretical foundations for sep-
aration logics with nested triples. In this paper we present Crowfoot, the first
automatic verification system to apply these developments in practice. Crowfoot
has been inspired by previous tools for automated verification using (conven-
tional) separation logic, such as Smallfoot [3].

? We acknowledge the support of EPSRC grant “From Reasoning Principles for Func-
tion Pointers To Logics for Self-Configuring Programs” (EP/G003173/1).

The Crowfoot tool provides (semi-)automatic verification for imperative pro-
grams which make use of higher-order store. Crowfoot uses an extension of sepa-
ration logic for higher-order store, and performs its proofs by symbolic execution
[4]. The main distinctive features of the Crowfoot verifier are:

– availability of nested triples for reasoning about stored procedures
– built-in support for recursive specifications for recursion through the store
– built-in support of the “deep frame rule”, allowing correct and powerful

framing of invariants in the presence of stored procedures
– built-in support of partial application of stored procedures
– an automatic prover for entailments between triples (as well as the usual

entailments between assertions), supporting modular verification
– a sound theoretical underpinning of the implementation

Running example. We demonstrate Crowfoot using the program in Fig. 1. Note
that grey shaded parts are annotations for the verifier and are not part of the
program code. They will be explained in Section 2.3. Our example concerns a
recursive implementation fib of the Fibonacci function, which makes its recursive
calls through the store. Since the “internal” recursive calls are made through
the store, we can “hook into” the recursion and provide a memoisation routine
mem which also caches these internal calls. This kind of memoisation cannot
be implemented for a conventional recursive implementation of the Fibonacci
function. This is more challenging than the factorial function which is typically
used [11, 2, 9] to illustrate recursion through the store.

We will use Crowfoot to prove that the fib code, with or without the memoi-
ser, is memory safe and correctly computes the Fibonacci function. In the process
we will demonstrate the features of Crowfoot which make this possible.

2 Programming and assertion languages

2.1 Programming language featuring higher-order store

Crowfoot works with an imperative heap-manipulating language with recursive
procedures and, crucially, higher-order store operations. Fig. 2 includes a gram-
mar for program statements. Square brackets are used for dereferencing ad-
dresses, so x := [a] reads the content at address a into the variable x, whereas
[a] := x stores the value of x at address a in the heap1.

There are two statements for using the higher-order store. Statements like
[a] := proc F(x,) write the code of fixed procedure F to the heap at address
a. Each argument is either a variable or the symbol; where variables are given
these are used to perform partial application of the procedure. Allowing pro-
cedures to be partially applied at the time they are stored on the heap is the

1 In Fig. 2, where there is a danger of confusion, we write [] for square brackets that
are part of the programming language, and [] for “meta-brackets” that are used in
grammar definitions. We write | for choice and ? for optional elements.

2

const res;

proc fib(a, n) {
locals p, q, k;

if n ≤ 0 then {
[res] := 0;

ghost fold $Rel(n, 0)

} else {
if n = 1 then {
[res] := 1;

ghost fold $Rel(?, ?)

} else {
k := n− 2;

eval [a](a, k); p := [res];

k := n− 1;

eval [a](a, k); q := [res];

[res] := p+ q;

ghost fold $Rel(n, p+q)

}}}

proc mem(lookupL, addL, createL,

disposeL, al , f, a, n) {
locals found , b, v;

ghost unfold $S(?, ?, ?, ?, ?, ?, ?);

found := new 0;

eval [lookupL](al , n, found , res);

b := [found]; dispose found ;

if b = 0 then {

ghost fold $S(?, ?, ?, ?, ?, ?, ?);

eval [f](a, n);

ghost unfold $S(?, ?, ?, ?, ?, ?, ?);

v := [res]; eval [addL](al , n, v)

} else { skip };

ghost fold $S(?, ?, ?, ?, ?, ?, ?) }

proc useFib(lookupL, addL, createL,

disposeL) {
locals al , a, f, n;

f := new 0;

al := new 0;

eval [createL](al);

[f] := proc fib(,) deepframe DeepInv ;

a := new 0;

[a] := proc mem(lookupL, addL, createL,

disposeL, al , f, ,);

ghost fold $S(?, ?, ?, ?, ?, ?, ?);

n := 31337;

eval[a](a, n);

ghost unfold $S(?, ?, ?, ?, ?, ?, ?);

ghost unfold $ListLibWeak(?, ?, ?, ?);

eval [disposeL](al);

dispose a; dispose f ; dispose lookupL;

dispose addL; dispose createL;

dispose disposeL; dispose res

}

proc main() {
locals lookupL, addL, createL, disposeL;

lookupL := new 0; addL := new 0;

createL := new 0; disposeL := new 0;

call load list lib(lookupL, addL,

createL, disposeL);

ghost unfold $ListLibStrong(?, ?, ?, ?);

ghost fold $ListLibWeak(?, ?, ?, ?);

call useFib(lookupL, addL, createL, disposeL)

}

proc load list lib(lookupL,

addL, createL, disposeL) {. . .}

Fig. 1. Our running example program. (DeepInv is defined in Fig. 4.)

3

integer variables x, fixed procedure names F , integer literals n, declared constants c

address expr eA ::= x | c | x+ n | x+ c

value expr eV ::= n | x | c | eV + eV | eV − eV | eV × eV
statement C ::= skip | At | C;C | if eV = eV then C else C

| while eV = eV do C | while eV 6= eV do C

argument t ::= x | c
atomic statement At ::= x := eV | x := [eA] | [eA] := eV | [eA] := [eA]

| x := new eV
+ | dispose eA | call F(t∗)

| eval [eA](t∗) | [eA] := proc F([t|]∗)

Fig. 2. Abstract syntax for program statements.

simplest way to enable programs to write non-constant procedures onto the heap.
As our syntax uses to represent arguments not yet “filled in”, we can supply
any subset of the arguments, not just initial segments. The statement eval[a](t)
runs the procedure stored on the heap at address a, with value parameters t,
faulting if address a does not contain a procedure of the appropriate arity.

2.2 Assertion language

Fig. 3 gives the syntax for the assertion language. Based on [17], the language
allows nested triples to appear in assertions, such that we can reason about stored
procedures. The assertion x 7→ ∀a. {a 7→ }·(a) {a 7→ }, for example, states that
the content at address x is a procedure which satisfies the given Hoare triple.2

Additions to the logic of [17] are the set and element expressions. In the formula
P(eV

∗; eS
∗), the ; separates integer arguments from set arguments. An assertion

is called pure if it is made up only of (in)equalities, set constraints and predicates
whose definitions are pure; pure formulae do not depend on the heap3.

When building formal verification tools there is a trade-off between expres-
siveness of the specifications that one considers, and the degree of automation
one can achieve. Rather than using the full assertion language, we restrict our-
selves to the fragment given in Fig. 3; in return for this sacrifice we are able to
program an effective automatic entailment prover in a fairly natural way.

2.3 Crowfoot input language

Crowfoot accepts annotated programs written using the programming and asser-
tion languages given in the previous subsections. Specifically, a Crowfoot input

2 During the proof process, constants may be substituted into the arguments of the
nested triple, which explains why the definition of B in Fig. 3 uses t.

3 Here for convenience we follow Smallfoot’s implementation and have only one kind
of conjunction ? in our logic; we do not include ∧. The pure formulae such as x = y
are then given a non-standard interpretation, also requiring that the heap be empty.

4

set variables α, predicate names P

element expressions eE ::= eV | (eE+)
set expressions eS ::= α | eS ∪ eS | {eE} | ∅
behavioural spec. B ::= ∀[x|α]∗. {P} · (t∗){Q}
content spec. C ::= eV | | B
atomic formula A ::= eA 7→ C + | P(eV

∗; eS
∗) | eV = eV | eV 6= eV

| eE ∈ eS | eE /∈ eS | eS ⊆ eS | eS = eS
spatial conjunction Φ,Θ, Υ ::= emp | A ? Θ
assertion disjunct Ψ ::= ∃[x|α]∗.Θ
assertion P,Q ::= false | Ψ ∨ P

Fig. 3. Abstract syntax for Crowfoot’s assertion language.

program is a sequence of declarations, which can be of the following kinds:

decl ::= const c | const c = n | forall P

| recdef P(x∗;α∗) := P | recdef P(x∗) := P(x∗) ◦ Ψ
| proc F(x∗) forall [x|α]∗. pre : P post : Q { locals x∗; C }
| proc abstract F(x∗) forall [x|α]∗. pre : P post : Q

The keyword const is used to declare named constants, optionally with a par-
ticular value. The keyword recdef is used to declare user-defined inductive or
recursive predicates, such as for linked data structures and for recursion through
the store. Examples, in Fig. 4, will be discussed in the next section. Declaration
forall P declares P to be an “abstract” or universally quantified predicate, i.e.
one that may be used in specifications but has no definition (and thus cannot
be folded or unfolded).

Finally, the keyword proc is used to declare procedures. Procedures have
a name, a formal parameter list, a pre- and post-condition, and a body. The
forall keyword is used to universally quantify variables over both the pre- and
post-condition. Procedures declared as abstract do not have a body, just a spec-
ification; abstract procedures are typically used when we want to describe the
behaviour of some library routine without giving an implementation.

Statement annotations In programs checked by Crowfoot, some of the state-
ments need to be annotated with extra information to help the verifier. These
annotations consist of the following changes to the statement grammar of Fig. 2:

statement C ::= . . . | while eV [=|6=] eV P do C

atomicst At ::= . . . | ghost ghoststmt | call F(t∗) deepfr-annot?

| [eA] := proc F([t|]∗) deepfr-annot?

ghoststmt ::= fold P([eV |?]∗; [eS |?]∗) | unfold P([eV |?]∗; [eS |?]∗)

deepfr-annot ::= deepframe Ψ

5

Loops are annotated with invariants (as in Smallfoot and VeriFast). Like Veri-
Fast, Crowfoot needs annotations to indicate at which locations it is necessary
to fold or unfold user-defined predicates4. These annotations take the form of
ghost fold and ghost unfold statements. For example, in order to reason about
code which disposes the head of a linked list, one needs to unfold the induc-
tively defined list predicate to expose the head node. Arguments to predicates
being folded and unfolded can be given, or they can be left blank using ‘?’ in
which case Crowfoot attempts to find appropriate instantiations. Crowfoot is
able to recognise predicate definitions which fit a general pattern for being “list-
segment-like”, and two further ghost statements split and join are available for
these; as they are not needed in our running example we will not describe them.

2.4 Deep framing

The deep frame rule [5, 17] allows one to infer {P}C {Q} ⊗ I from {P}C {Q},
where ⊗ is a deep framing operator. Intuitively this operator adds the invariant
I not just to the pre- and post-conditions of the triple {P}C {Q}, but also to
all triples nested inside P and Q, at all levels. For example,

∀a. {a 7→ {emp} · () {emp}} · (a) {emp} ⊗ y 7→
⇔ ∀a. {a 7→ {y 7→ } · () {y 7→ } ? y 7→ } · (a) {y 7→ }

as can be proved using the distribution laws for ⊗ found in [17]. This is useful for
modular reasoning as explained in [5] and as will be demonstrated by our running
example. The operator ◦ from [17], used in recdef definitions, is a convenient
shorthand: A ◦ I := (A⊗ I) ? I.

The annotation deepframe I tells Crowfoot to add the invariant I deeply onto
the triple for a procedure; this can be done when a procedure is invoked with
call (but not with eval [8]), or when a procedure is first written to the heap.

Crowfoot implements deep framing using the ⊗ distribution laws from [17].
However there is no simple law for distributing ⊗ through recursively defined
predicates; instead, Crowfoot uses the following lemma.

Lemma 1. Given the following predicate definition

R(x) :=
n

F
i=1

vi 7→ ∀ai. {R(e) ? Fi} · (pi) {R(e) ? Gi} ? H

where: e may contain variables ai as well as x, each Fi, each Gi and H are all
left zeroes of ⊗ (i.e. informally they do not contain any nested triples), let us
define S(x,y) := R(x)◦T (y) where fv(T (y)) = y and y∩ai = ∅ (implicitly also
x∩y = ∅). Note that T may contain occurrences of S again. Then the following
equivalence holds:

S(x,y) ⇔
(

n

F
i=1

vi 7→ ∀ai. {S(e,y) ? Fi} · (pi) {S(e,y) ? Gi}
)
? H ? T (y)

4 Smallfoot [3] did not need fold/unfold ghost statements because only particular built-
in list and tree predicates were available. Crowfoot allows users to write their own
inductive definitions and thus, like VeriFast [13], requires extra annotations.

6

recdef $Rel(n,m) := n ≤ 0 ? m = 0 ∨ n = 1 ? m = 1

∨ ∃a, b. 2 ≤ n ? $Rel(n− 2, a) ? $Rel(n− 1, b) ? m = a+ b

recdef $RecFn(f) := f 7→ ∀n, a.
{$RecFn(a) ? res 7→ } · (a, n) {∃v. $RecFn(a) ? res 7→ v ∗ $Rel(n, v)}

recdef $ListLibStrong(lookupL, addL, createL, disposeL) :=

lookupL 7→ . . . ? createL 7→ . . . ? disposeL 7→ . . .

? addL 7→ ∀al , key , value, κ.{
$AssocListH (al ;κ)
? $Rel(key , value)

}
·(al , key , value)

{
$AssocListH (al ; {key} ∪ κ)

}

recdef $ListLibWeak(lookupL, addL, createL, disposeL) :=

lookupL 7→ . . . ? createL 7→ . . . ? disposeL 7→ . . .

? addL 7→ ∀al , key , value.{
∃κ. $AssocListH (al ;κ)
? $Rel(key , value)

}
·(al , key , value)

{
∃κ.
$AssocListH (al ;κ)

}
recdef $S(a, f, al , lookupL, addL, createL, disposeL) := $RecFn(a) ◦DeepInv

where DeepInv abbreviates

∃κ.



f 7→ ∀n, a.{
$S(a, f, al , lookupL, addL, createL, disposeL) ? res 7→

}
·(a, n){

∃v. $S(a, f, al , lookupL, addL, createL, disposeL) ? res 7→ v ? $Rel(n, v)
}

? $AssocListH (al ;κ) ? $ListLibWeak(lookupL, addL, createL, disposeL)



recdef $AssocList(x; τ) := x = 0 ? τ = ∅
∨ ∃next , k, v, τ ′. x 7→ k, v,next ? $Rel(k, v) ? $AssocList(next ; τ ′) ? τ = {k} ∪ τ ′

recdef $AssocListH (x; τ) := ∃y. x 7→ y ? $AssocList(y; τ)

Fig. 4. User-defined predicates used to specify and verify our running example.

3 Specification of the running example

The specifications of the procedures in Fig. 1 can be found in Fig. 5. The auxiliary
predicate definitions are given in Fig. 4.

The fib implementation. Let us first examine how to specify the fib code.
Predicate $Rel(n,m) says that n and m are appropriately related for the function

7

proc main()
pre : res 7→ ;
post : emp;

proc fib(a,n)
pre : $RecFn(a) ? res 7→ ;
post : ∃v . $RecFn(a) ? res 7→ v ? $Rel(n, v);

proc mem(lookupL, addL, createL, disposeL, al , f , a,n)
pre : $S(a, f , al , lookupL, addL, createL, disposeL) ? res 7→ ;
post : ∃m. $S(a, f , al , lookupL, addL, createL, disposeL) ? res 7→ m ? $Rel(n,m);

proc useFib(lookupL, addL, createL, disposeL)
pre : res 7→ ? $ListLibWeak(lookupL, addL, createL, disposeL); post : emp;

proc load list lib(lookupL, addL, createL, disposeL)
pre : lookupL 7→ ? addL 7→ ? createL 7→ ? disposeL 7→ ;
post : $ListLibStrong(lookupL, addL, createL, disposeL);

Fig. 5. Procedure specifications for the memoiser example.

being computed; in this case we define $Rel(n,m) to mean that m is the nth
Fibonacci number. But this definition is only used inside the proof of fib, and
not when proving the generic components such as mem.

Suppose we try to write a precondition for the fib code. This precondition
must mention all the heap resources needed by fib. Firstly a cell res 7→ is
needed into which we write the result. Secondly, since fib makes its recursive
call through the heap at the address given by parameter a, the precondition
must include a 7→ B where B is a nested triple. In particular, B must state that
the code stored at a has the same kind of behaviour as we specify for the fib
procedure. But we don’t have fib’s specification yet, because we are still trying
to formulate its precondition! It appears that we need a specification which
depends on itself. Using the recdef keyword we can declare such a recursively
defined specification, namely the $RecFn predicate, which appears nested inside
its own definition.

The memoiser. The memoiser implementation uses an association list data
structure, at address al , to cache the input-output pairs for the function being
memoised. An association list with a header cell, starting at address al and
containing values for a set κ of keys, is described by $AssocListH (al ;κ). Such
lists are manipulated via four library routines, pointers to which are passed in
the arguments lookupL, addL, createL, disposeL. Argument f to procedure mem
is a pointer to the code of the function being memoised; the memoiser must
call this code when the required data is not found in the cache. The arguments
lookupL, addL, createL, disposeL, al , f are fixed by partial application when the
memoiser is first loaded onto the heap. This leaves a two-argument procedure:
the first argument a is passed straight through to the function being memoised,
and the second argument n is the input at which to apply the function.

The memoiser is designed to be placed into mutual recursion with fib, or
similar code for computing other functions. During computations the fib code
and the memoiser then invoke each other in a “zig-zag” mutual recursion. The

8

“ensemble” of these two functions stored on the heap and able to invoke each
other can be described by $S (a, f, al , lookupL, addL, createL, disposeL) which, by
Lemma 1, is equivalent to:

∃κ. a 7→ RecFnMem(·) ? f 7→ RecFnMem(·)
? $AssocListH (al ;κ) ? $ListLibWeak(lookupL, addL, createL, disposeL)

where RecFnMem(·) is shorthand for

∀a, n.

{
$S (a, f, al , lookupL, addL, createL, disposeL) ? res 7→

}
·(a, n){

∃v. $S (a, f, al , lookupL, addL, createL, disposeL) ? res 7→ v ? $Rel(n, v)
}

Intuitively RecFnMem describes code which computes a function as specified by
$Rel , provided the heap contains the “ensemble” of function and memoiser code
as described above.

The main program. The main procedure first calls load list lib to load
the association list library routines onto the heap. Then, main invokes useFib
which loads the fib code and the memoiser, places them into mutual recursion,
and finally uses this to compute the 31337th Fibonacci number.

In useFib we see the crucial role of the deep frame rule. We have specified
(and Crowfoot will prove) fib for the case where it is placed in recursion only
with itself, using $RecFn. Hence, if the deepframe annotation were not used in
useFib, the symbolic heap after the statement [f] := proc fib(,) would contain

f 7→ ∀a, n. {$RecFn(a) ? res 7→ }·(a,n) {∃v . $RecFn(a) ? res 7→ v ? $Rel(n, v)}

However the annotation deepframe DeepInv tells Crowfoot to apply −⊗DeepInv
to the above triple, resulting in RecFnMem(·). In this way, we have used the
deep frame rule to derive another specification for the fib code, which describes
how that code works in mutual recursion with a memoiser. We did not need to
respecify or reprove fib.

The list library. The memoiser depends only on relatively weak proper-
ties of the association list library; a library with these properties is specified
by $ListLibWeak . But the list library is specified with a stronger specification
$ListLibStrong so that it can also be used with other clients which need addi-
tional guarantees. Specifications for three of the routines are omitted in Fig. 4,
but with the remaining “add” routine one can see a difference. In order to com-
pute the correct function, the memoiser does not care whether the (key , value)
pair is actually added to the list or not, as long as whatever pairs are in the list
afterwards are suitably related by $Rel . But other clients of the list library will
certainly care about this.

Our verification will go through because Crowfoot can prove the entailment

$ListLibStrong(lookupL, addL, createL, disposeL)
⇒ $ListLibWeak(lookupL, addL, createL, disposeL)

(1)

as we shall discuss in Section 5. Having such entailments proved automatically
facilitates reasoning when one is “plugging together” different pieces of code.

9

4 Automation of program verification

4.1 Overview

The introduction of nested triples into the logic increases considerably the diffi-
culty of proving entailments automatically: because assertions can contain triples
and vice versa, we need provers for entailments between both assertions and
triples, and these provers need to invoke each other. In fact, at the heart of
Crowfoot are automated provers for five interrelated judgements:

– Symbolic execution: Π,Γ . {P}C{ Q }

– Entailment between assertion disjuncts: Φ ` I ∃v. Υ ? Θ
– Entailment between behavioural specifications (triples): B1 ` B2

– Computing the postcondition for a call or eval: B `find-post {Φ} · (t){ Q }
– Finding specifications inside a symbolic state: Υ `find-tr e 7→ B

Here,Π is a predicate context mapping predicate names to their definitions (given
by recdef) and Γ is a procedure context mapping fixed procedure names to their
specifications (given by pre and post). C is a program statement. (As in Fig. 3)
P,Q are assertions, Ψ is used for assertion disjuncts, and Φ,Θ, Υ for spatial
conjunctions. Behavioural specifications are named B, and I is an instantiation
map mapping the existentially quantified variables v to appropriate witnesses.

Shaded variables (such as the frame Θ) are those whose value is not given as
an input to the prover, but rather is inferred by the proof rules. The meanings
of these judgements can be seen in the following soundness theorem, which for
now we simply state; we will discuss it later in Section 4.4.

Theorem 1. Soundness theorem. Our five proof systems are sound, that is:

– If Φ `I ∃v.Υ ? Θ (where fv(Φ) ∩ v = ∅) then Φ ⇒ Υ [v\I(v)] ? Θ where:
fv(Θ) ⊆ fv(Φ), dom(I) = v and fv(Im(I)) ⊆ fv(Φ).

– If B1 ` B2 then B1 ⇒ B2.
– If B `find-post {Φ} · (t) {Q} then B ⇒ {Φ} · (t) {Q}.
– If Υ `find-tr e 7→ B then Υ ⇔ e 7→ B ? Υ ′ for some Υ ′.
– Our symbolic execution rules are sound. ut

Verification of a program by Crowfoot proceeds as follows. First, Crowfoot’s ver-
ification condition (VC) generator reads in the annotated program and produces
a set of VCs, each of the form Π;Γ . {P}C {Q}, such that if all the VCs hold
then the input program meets its specifications. There is one such VC for each
concrete procedure of the input program, with C being its body and P,Q the
pre- and post-conditions. Then the generated VCs are passed to the symbolic
execution engine which attempts to prove them. During symbolic execution, en-
tailment problems of various kinds arise: for instance when the end of a procedure
(resp. loop body) is reached, one must check an entailment between the current
symbolic state and the postcondition (resp. loop invariant). These entailments

10

(between assertions) may give rise to entailments between triples because triples
can appear nested. When an eval statement is reached, `find-tr is employed to
find a triple to use for the invocation, and then `find-post is used to compute a
symbolic state holding after the invoked code returns.

4.2 Symbolic execution engine

Crowfoot’s symbolic execution engine is based on ideas put forward in [4] and
now well established. The symbolic execution rules, a few of which can be seen
in Fig. 7, depend on all four of the other judgements. One such rule is:

Lookup
purify(Υ) `SMT E = G+ o

Π;Γ .
{
x = (e[x\x′]) ? (Υ ? G 7→ C0, . . . ,Co−1, e,Co+1, . . . ,Cn)[x\x′]

}
C {Q}

Π;Γ . {Υ ? G 7→ C0, . . . ,Co−1, e,Co+1, . . . ,Cn}x := [E]; C {Q}
x′ fresh

where purify(Υ) extracts the pure parts of Υ , and `SMT represents sending a
pure goal to an SMT solver to be checked. The rules which are intrinsically new
in our work are those for the statements which make use of higher-order store,
namely eval [E](t) and [E] := proc F([t|]∗). The rule for eval (where a ∈ [x|α]∗)
is:

Eval
Υ `find-tr E 7→ ∀a.{P} · (t){Q}

∀a.{P} · (t){Q} `find-post {Υ} · (t′)

{
m∨
i=1

∃vi.Φi

}

Π;Γ .

{
m∨
i=1

Φi[vi\v′
i]

}
C
{
Q′
}

Π;Γ . {Υ} eval [E](t′) ; C
{
Q′
} v′

i fresh

This uses the `find-tr prover to find the specification ∀a.{P} · (t){Q} of the code
being invoked from the heap. Then the `find-post prover is used to compute all the
possible symbolic states ∃vi.Φi that may result from running that code. Finally,
symbolic execution is performed on the “continuation” statement C.

4.3 Entailment provers

We sketch how our different entailment provers work. The selected rules we refer
to are listed in Fig. 6.

Entailments between assertion disjuncts. The main part of these proofs
involves successively cancelling spatial formulae from the left and right sides of
`. Sometimes these steps involve computing witnesses for existentially quantified
variables, which are added to the instantiation map I. For instance, the goal

Φ ? x 7→ 3 `I ∃u,v. Υ ? x 7→ u ? Θ reduces to Φ `I
′
∃v. Υ [u\3] ? Θ

by CancelPtInstContents, where we will take I := I ′[u := 3]. Note how the
rule CancelPtTriple for cancelling cells containing code invokes the prover for
entailments between triples (specifications). The cancellation rules are designed

11

to reduce the goal to the form Υ `I Φ ?Θ where Φ is pure. We finish by sending
the pure entailment problem purify(Υ) `SMT Φ to an SMT solver, and we take
Υ as the inferred frame Θ.

Entailments between specifications. Most of the work of proving judge-
ments B1 ` B2 is done by the TripleEnt rule, which breaks down the checking
of an entailment B ` {Φ} · (t) {Q′} between specifications into two tasks. Intu-
itively, we first use `find-post to try to compute a state Q we will end up in if
we run some code with specification B in a state satisfying Φ. We then check
whether Q implies the postcondition Q′.

Inferring postconditions for invocations. The main rule for `find-post

is InferSpecForCall. Underlying it is a combination of ∀-instantiation, the
shallow frame axiom {P}C{Q} ⇒ {P ?R}C{Q?R} and the consequence axiom.

Finding specifications inside a symbolic state. To be able to symboli-
cally execute an eval [e](t) statement, we need to first find in our symbolic heap
a cell e 7→ B; we can then use the specification B to reason about the invocation.
We use `find-tr for finding such specifications. The most commonly used proof
rule for `find-tr is Find which covers the case when the required cell e 7→ B is
available in the symbolic heap without performing any unfolding. Other proof
rules, omitted for space reasons, look inside occurrences of user-defined predi-
cates to find the appropriate specification.

4.4 Theoretical basis

One distinctive feature of our tool is that we can prove its soundness, embodied
by Theorem 1. Due to lack of space we cannot go into detail, but we briefly
explain our soundness argument. Soundness is proved with respect to another
logic with nested triples, an extension of the logic of [17]5 which in turn has been
proved sound in loc. cit. via a model construction. It is relatively straightforward
to construct a step-indexed analogue which encompasses Crowfoot’s extra fea-
tures. It should be pointed out that soundness only holds for recursive predicates
that exist. For a predicate R such as $RecFn (Fig. 4), existence is guaranteed
because in its definition, R itself always occurs inside pre- and postconditions of
some triple. The corresponding semantic functional is contractive and thus the
predicate does exist via Banach’s fixpoint theorem. In general however, reasons
for existence may not be immediately clear, particularly for definitions that com-
bine the recursive uses of R (as in $RecFn) with inductive uses of R, as found
in definitions of linked list predicates. Our tool does not check for existence.

5 Excerpt from the verification of the running example

During the symbolic execution of main, we see how the entailment prover for
assertions and the prover for specifications are mutually recursive. Before calling

5 enriched by inductive and abstract predicates as well as recursively defined proce-
dures with explicit calls

12

InferSpecForCall
Φ `I ∃uk,a. Υk ? Θ

∀a.

{
n∨

i=1

∃ui.Υi

}
· (t)

{
m∨
i=1

∃vi.Υ
′
i

}
`find-post {Φ} · (t)

{
m∨
i=1

(∃vi.Υ
′
i [a\I(a)] ? Θ)

}

1. t ∩ a = ∅ 2. fv(Φ) ∩ uk = ∅ and fv(Φ) ∩ a = ∅
3. for each i ∈ {1, . . . ,m} we have vi ∩ a = ∅
4. for each i ∈ {1, . . . ,m}, no formula in I(a) contains a variable from vi

5. k ∈ {1, . . . , n} 6. uk ∩ a = ∅

TripleEnt

B `find-post {Φ} · (t)

{
m∨
i=1

∃vi.Υi

}
m∧
i=1

(
Υi[vi\ai] `Ii ∃bji .(Υ

′
ji [wji\bji]) ? Θi

)

B ` {Φ} · (t)


m′∨
i=1

∃wi.Υ
′
i


1. j1, . . . , jm ∈ {1, . . . ,m′}
2. a1, . . . ,am all chosen fresh
3. bj1 , . . . , bjm′ all chosen fresh
4. Θ1, . . . , Θm pure

CancelPtInstContents
Φ `I ∃v . Υ [v\E] ? Θ

Φ ? e 7→ E `I[v:=E] ∃v, v . Υ ? e′ 7→ v ? Θ

1. fv(e′) ∩ v = ∅ 2. v /∈ fv(e′)
3. purify(Φ) `SMT e = e′

CancelPtTriple
Φ `I ∃v . Υ ? Θ B1 ` B2

Φ ? e 7→ B1 `I ∃v . Υ ? e′ 7→ B2 ? Θ

1. fv(e′, B2) ∩ v = ∅
2. purify(Φ) `SMT e = e′

Find

Φ ? E 7→ C0, . . . ,Co−1, B,Co+1, . . .Cn `find-tr e 7→ B
purify(Φ) `SMT e = E + o

Fig. 6. Notable rules used in our automatic entailment provers.

the useFib procedure, the $ListLibStrong predicate is unfolded, and folded up
into $ListLibWeak . This essentially means proving (1) on page 9, which is an
entailment between assertion disjuncts.

The proof proceeds by cancelling out the atomic formulae, which in this case
means using CancelPtTriple for each of the four library procedures. This is
where the entailment prover for specifications is needed: the premise of this rule
requires that each strong specification entails the respective weak variation.

This entailment is checked by the TripleEnt rule, which has two premises.
The first uses the judgement `find-post (with InferSpecForCall) which will
check that the weak pre-condition entails the strong pre-condition, with some in-
ferred frame left over (in this case the frame is trivial). For the second premise it is

13

required to prove that the strong postcondition (together with the frame) entails
the weak one. Using again the entailment prover for assertion disjuncts, Crowfoot
proves: $AssocListH (al , {key} ∪ κ) `[κ′ 7→{key}∪κ] ∃κ′. $AssocListH (al , κ′).

6 Related and future work

Crowfoot can be considered as extending Smallfoot [4] (though Crowfoot was
written from scratch) by allowing (partially applicable) procedures to be stored
on the heap. Our assertion language uses nested triples to specify stored proce-
dures and recursively defined assertions to deal with recursion through the store.
Crowfoot uses an SMT solver to deal with pure assertions and therefore can be
used to prove more than just memory safety (see our example).

The system most closely related to Crowfoot is the VeriFast [13, 12] tool, also
based on symbolic execution with separation logic. VeriFast supports a C-like
language (and also Java) and supports C-style function pointers. Functions in
the C-like language live in an immutable memory and can be pointed to but not
updated, whereas Crowfoot’s programming language stores procedures in dy-
namic, mutable memory. However these setups seem to have a similar character.

A key difference is that while Crowfoot uses nested triples to express require-
ments for procedure pointers, VeriFast expresses such requirements via function
types with which the C type system is extended. A function type declaration
associates a pre- and post-condition with the function type; the declared type
can have extra arguments to simulate nested triples which can contain free vari-
ables. These can be recursive since for every function type F there is a predicate
‘is F ()’ which states that (the function pointed to by) its first argument satisfies
the “contract” for function type F (possibly with additional arguments).

Crowfoot offers some features which VeriFast does not, such as partial ap-
plication of which our example makes essential use in useFib when loading the
memoiser mem. Another important feature to support stored procedures is en-
tailment between Hoare triples which is automated in our verifier and needed in
our example, as explained in Section 5. VeriFast does not support such proofs
(which in that system would be proofs of entailments of shape is F ()⇒ is G()),
even manual ones, whereas Crowfoot finds them automatically. Crowfoot sup-
ports annotations for deep frame rule application (thus implementing the ⊗
operator) and allows extensions of predicates via ◦, thus allowing elegant use
of deep framing on recursively defined specifications (cf. definition of $S in our
example in Fig. 4). In VeriFast one can simulate the effect of the deep frame
rule by using (second order) function types which take as argument a predicate
representing the deeply framed invariant. However, this means one must write
all specifications that can appear for stored procedures a priori in that style.

On the other hand, VeriFast offers features that Crowfoot does not, such as
concurrency, termination checking and the use of more types (such as mathe-
matical lists and functions on them) in the assertions. VeriFast’s support for
second order logic is useful for specifying and reasoning about higher-order and
polymorphic functions.

14

Other related work includes four systems developed in Coq: XCAP [16],
Bedrock [10], GCAP [6] and Ynot [14]. XCAP allows reasoning about programs
which use pointers to (immutable) functions, by introducing a special cptr pred-
icate which in proofs behaves much like nested triples, though its underlying se-
mantics is very different. GCAP is a related system supporting reasoning about
low-level runtime code modification. Ynot builds a type theory in which Hoare
triples (“Hoare types”) can be used as the types for side-effecting commands;
these Hoare types can be nested. To our knowledge, Ynot does not support
recursion through the store.

Previous work [7] briefly described one application of Crowfoot, namely the
verification of runtime code updates, but did not go into detail about Crowfoot,
its implementation or its theoretical basis. An interactive version of Crowfoot,
which includes the example of this paper and others, can be used online [1].

Future work. The following extensions would permit the verification of more
examples. As the antiframe rule is consistent with the logic used in Crowfoot
(as proved in [18]), annotations similar to those for the deep frame rule could be
implemented to allow hiding of invariants in “antiframe style”. Though we do not
need it for deep framing like VeriFast does, second order logic would support the
specification of parametric procedures. A minor but useful extension is to allow
proper functions with result values. We believe that Lemma 1 can be generalised
to support mutually recursive definitions and to allow deep framing onto abstract
(universally quantified) predicates. We plan to investigate extensions required to
support reasoning about reflective programs and, finally, it is likely that many
fold/unfold annotations can be discovered automatically, as done in [15].

References

1. The Crowfoot website. www.sussex.ac.uk/informatics/crowfoot, 2011.

2. N. Benton, A. Kennedy, L. Beringer, and M. Hofmann. Relational semantics for
effect-based program transformations: higher-order store. In PPDP, pages 301–312,
2009.

3. J. Berdine, C. Calcagno, and P. W. O’Hearn. Smallfoot: Modular automatic as-
sertion checking with separation logic. In FMCO, pages 115–137, 2005.

4. J. Berdine, C. Calcagno, and P. W. O’Hearn. Symbolic execution with separation
logic. In APLAS, pages 52–68, 2005.

5. L. Birkedal, N. Torp-Smith, and H. Yang. Semantics of separation-logic typing
and higher-order frame rules for Algol-like languages. LMCS, 2(5), 2006.

6. H. Cai, Z. Shao, and A. Vaynberg. Certified self-modifying code. In PLDI, pages
66–77, 2007.

7. N. Charlton, B. Horsfall, and B. Reus. Formal reasoning about runtime code up-
date. In S. Abiteboul, K. Böhm, C. Koch, and K.-L. Tan, editors, ICDE Workshops,
pages 134–138. IEEE, 2011.

8. N. Charlton and B. Reus. A deeper understanding of the deep frame axiom.
Extended abstract, presented at LOLA (Syntax and Semantics of Low Level Lan-
guages), 2010.

15

New
Π;Γ .

{
Φ[x\x′] ? x 7→ (e0, . . . , en)[x\x′]

}
C {Q}

Π;Γ . {Φ}x := new e0, . . . , en; C {Q}
x′ fresh

Call

∀a. {P} · (t) {Q} ⊗ Ψ `find-post {Φ} · (t′)

{
m∨
i=1

∃vi.Υi

}

Π; ∀a. {P}F(t) {Q} , Γ .

{
m∨
i=1

Υi[vi\v′
i]

}
C
{
Q′
}

Π; ∀a. {P}F(t) {Q} , Γ . {Φ} call F(t′) deepframe Ψ ; C
{
Q′
} v′

i fresh

StoreCode
Γ = Γ ′, ∀t,a. {P}F(t) {Q}

B = (∀t|U ,a. {P} · (t|U) {Q}) [t|I\U\r|I\U]
Π;Γ . {Φ ? G 7→ C0, . . . ,Co−1, B ⊗ Ψ ,Co+1, . . . ,Cn}C

{
Q′
}

Π;Γ . {Φ ? G 7→ C0, . . . ,Cn} [E] := proc F(r) deepframe Ψ ; C
{
Q′
}

1. r ∈ [x|c|]∗ 2. a = fv(P,Q)− t 3. purify(Φ) `SMT E = G+ o
4. t = (ti)i∈I 5. U = {i ∈ I | ri = } 6. t|X = (ti)i∈I∩X

Fig. 7. Some of our symbolic execution rules.

9. N. Charlton and B. Reus. Specification patterns and proofs for recursion through
the store. In FCT, pages 310–321, 2011.

10. A. Chlipala. Mostly-automated verification of low-level programs in computational
separation logic. In M. W. Hall and D. A. Padua, editors, PLDI, pages 234–245.
ACM, 2011.

11. K. Honda, N. Yoshida, and M. Berger. An observationally complete program logic
for imperative higher-order functions. In LICS, pages 270–279, 2005.

12. B. Jacobs, J. Smans, P. Philippaerts, F. Vogels, W. Penninckx, and F. Piessens.
VeriFast: A powerful, sound, predictable, fast verifier for C and Java. In NASA
Formal Methods, pages 41–55, 2011.

13. B. Jacobs, J. Smans, and F. Piessens. A quick tour of the VeriFast program verifier.
In APLAS, pages 304–311, 2010.

14. A. Nanevski, J. G. Morrisett, and L. Birkedal. Hoare type theory, polymorphism
and separation. J. Funct. Program., 18(5-6):865–911, 2008.

15. H. H. Nguyen, C. David, S. Qin, and W.-N. Chin. Automated verification of shape
and size properties via separation logic. In VMCAI, pages 251–266, 2007.

16. Z. Ni and Z. Shao. Certified assembly programming with embedded code pointers.
In POPL, pages 320–333, 2006.

17. J. Schwinghammer, L. Birkedal, B. Reus, and H. Yang. Nested Hoare triples and
frame rules for higher-order store. In CSL, pages 440–454, 2009.

18. J. Schwinghammer, H. Yang, L. Birkedal, F. Pottier, and B. Reus. A semantic
foundation for hidden state. In FOSSACS, pages 2–17, 2010.

16

