Crowfoot: a verifier for
higher order store programs*

Nathaniel Charlton Ben Horsfall Bernhard Reus

School of Informatics, University of Sussex

Abstract. We present Crowfoot, an automatic verification tool for im-
perative programs that manipulate procedures dynamically at runtime;
these programs use a heap that can store not only data but also code
(commands or procedures). Such heaps are often called higher order
store, and allow for instance the creation of recursive procedures on the
fly. One can use higher order store to model phenomena such as runtime
loading and unloading of code, runtime update of code and runtime code
generation. Crowfoot’s assertion language, based on separation logic, fea-
tures nested Hoare triples which describe the behaviour of procedures
stored on the heap. The tool addresses complex issues like deep frame
rules and recursion through the store, and is the first verification tool
based on recent developments in the mathematical foundations of Hoare
logics with nested triples.

1 Introduction

Dynamic memory that can store not only data but also code is often called
higher order store. Higher order store thus allows program code to change during
execution with the manipulation performed by the program itself. For instance,
one may be able to write code onto a mutable heap, invoke it, manipulate it, and
then invoke it again later when needed. With higher order store one can model
phenomena such as runtime loading and unloading of code — as performed in
plugin systems, operating system kernels and dynamic software update systems
— and runtime code generation.

Logics with nested triples [9,7], where assertions can contain Hoare triples
which describe the behaviour of code stored on the program’s heap, have been
proposed as a way to reason modularly about higher order store programs. Re-
cent developments [9,10] have provided solid theoretical foundations for sepa-
ration logics with nested triples. In this paper we present Crowfoot, the first
automatic verification system to apply these developments in practice. Crowfoot
has been inspired by previous tools for automated verification using (first order)
separation logic, such as Smallfoot [2].

We demonstrate Crowfoot using the program in Fig. 1. The higher order
procedure search traverses a linked list looking for an element which passes a
particular test; search takes as an argument a pointer to a stored procedure

* We acknowledge the support of EPSRC grant “From Reasoning Principles for Func-
tion Pointers To Logics for Self-Configuring Programs” (EP/G003173/1).

proc isEql(ptr,val,res,self,i)q{ proc search(list,test,res) {

locals tmp; locals data, next, tmp;
tmp := [ptr]; if list = O then {
if tmp = val then { [res] := 0
if i =1 } else {
then { [res] :=1 %} data := [list];
else { eval [test] (data,res);
[self]:= isEql(ptr,_,_,self,i-1); tmp := [res];
[res]:= 0 if tmp = O then {
¥ next := [list + 1];
} else { [res] := 0} call search(next,test,res)
} } else {
[res] := 1
proc main(list) { }H}
locals test, res, value;
test := new 0; res := new O;
value := new 3;
[test] := isEql(value,_,_,test,2); call search(list, test, res);
[value] := 4;
[test] := isEql(value,_,_,test,1); call search(list, test, res);

dispose value; dispose test; dispose res
Fig. 1. Our running example: a higher-order list search program

implementing that test. By using a self-updating test procedure, we can use
search not just to search for elements with particular properties, but also to
find out whether a list contains at least a given number of such elements.

The first procedure, isEql (ptr,val,res,self,i), essentially compares the
content at address ptr with the val argument. The result is returned in the cell
pointed to by res. However, there is a twist: whenever isEql finds a matching
element it will update the content of self with a (partially applied) copy of it-
self, decreasing the counter i but returning false. Only when i = 1 will it behave
like a normal comparison operator. This trick allows one to use the same search
procedure for different kinds of searches and enables us to easily showcase vari-
ous Crowfoot features involving stored procedures later. The second procedure,
search(list,test,res), performs the list search by recursively traversing the
(linked) list starting at address 1ist, with the procedure at test being applied
to each element until 1 (encoding true) is returned. The result is returned in res.
Finally, main shows an example usage of the search procedure, using instances
of isEql as the test to find 2 and 1 occurrences of values 3 and 4, respectively.

2 Crowfoot’s input language

Programming language The programs analysed by Crowfoot are written in an
imperative language with recursive procedures, call-by-value parameter passing,
and dynamic memory allocation via a mutable heap supporting address arith-
metic (to simulate arrays/records) and, crucially, higher order store operations.

integer variables x, set variables a, predicate names P, integer literals n,
declared constants ¢

address expressions es4 == z|x+n|xz+c
value expressions ey == n|z|ley+ev|ev —ev]|ev Xey
element expressions erp = ev | (eg™)
set expressions es == alesUes|{er}|0
behavioural spec. B := V[z|o]". {®} - (z"){P}
atomic formula® A u= ea[ev |_| B]T
| Plev™,es™) | ev =ev | ev # ev
|eg €Ees|en ¢ es|es Ces|es=es
spatial conjunction C' = emp | AxC
assertion & == false | z|a]".C V &

% We could easily extend this, adding for example intersections or disequalities of sets.

Fig. 2. Abstract syntax for Crowfoot’s assertion language

A program is a sequence of declarations, according to the grammar given
in Fig. 3. Procedure bodies consist of atomic statements, along with sequential
composition, if-then-else conditionals and while loops. These fixed procedures
can be loaded onto the heap to obtain stored procedures.

Most of the statement forms of the language can be seen in Fig. 1. The
isEql procedure definition shows the declaration of a local variable (tmp), the
dereferencing (using [1) of address ptr where the content is stored in tmp, and
heap assignment operations where 1 or 0 (encoding true or false) is stored in the
cell at address res. We use the cell at res to hold the output because procedures
have no return value. Further heap-manipulating statements can be seen in main
which shows the allocation of three heap cells, with initial content 0, 0 and 3,
respectively, and their subsequent disposal at the end of the procedure.

We also have statements for working with higher order store: the search
procedure uses an eval command, which executes the code stored at address
test with the given arguments. In order for main to use the search procedure,
the code for the desired test must first be written onto the heap. This is done in
lines 5 and 7 of main, where we load the implementation of isEql into the cell
at test instantiating some of the arguments at runtime (partial application).

Assertion language Fig. 2 gives Crowfoot’s assertion language. We use the logic
from [9], restricted to a particular fragment to facilitate automation. The key
addition to separation logic is the ability to have nested triples within assertions,
which allows us to reason about stored procedures. For instance, the assertion
x +— Va.{a— _} _(a) {a — _} states that address x contains a procedure satis-
fying Hoare triple Va.{a + _} _(a) {a — _}; such a procedure runs safely on any
argument a which points to an allocated cell (a+_), and leaves that cell allocated
if it terminates. We also have set constraints, which do not appear in [9].

Like Smallfoot [2], we do not distinguish between the pure and spatial parts
of an assertion, and have only one kind of conjunction operator *; pure formulae

annotated program statements S, (fixed) procedure names F

constant declaration const ¢ | const ¢ =n
predicate declaration recdef P(z*, o) := &
kringel declaration kringeldef P(z*, a*) := P(z", ") o J[z|a]".C

procedure declaration proc F(x*) V[z|a]*. pre: & post: ¢ { locals z*; S }
abstract proc. declaration proc abstract F(z*) V[z|a]*. pre: ¢ post: &

Fig. 3. Grammar for annotated programs.

such as x = 0 are understood to hold only in the empty heap. In input files we
write %a for set o and $P for predicate P; other ASCII notation includes using
| -> for s, * for %, ++ for U, <x> for {x}, | for V and in for €.

Annotated programs An annotated program is a sequence of declarations, as
detailed in Fig. 3. Procedure declarations include behavioural specifications, in
the form of pre- and post-conditions. ‘Abstract’ procedure declarations consist
of just the signature and specification; the concrete implementation is omitted.
Any while statements in procedure bodies are annotated with loop invariants,
and call statements can have deep frame annotations which give invariants
to be framed on “deeply”. The deep frame rule [4,9], like the regular frame
rule of separation logic, adds an invariant I to the pre- and post-condition of
a Hoare triple. However, the deep frame rule also adds I as an invariant to all
triples nested inside the pre- and post-condition (at all levels). User defined
predicates are declared via recdef and can be inductive (e.g. lists) or recursive.
The latter are used for reasoning about recursion through the store [9], e.g.
R(z) ==z {PxR(x)}-(){Q * R(z)}. Similarly, declarations with kringeldef
define predicates with a “deeply” framed on invariant (@ is ASCII for o).

3 Specification and verification of the example

We now describe how to use Crowfoot to verify some safety properties of our
example program. To describe the linked lists the program uses, we define (us-
ing recdef) a predicate $List (x;%a) denoting a list starting at address x and
whose node addresses and contents are the pairs in set %a (see Fig. 4). As ab-
breviations we define predicates $Decider(p), stating that p points to a two-
argument procedure which writes a Boolean to the address in its 2nd argu-
ment, and $FrameDecider(p,x,v) which is as $Decider(p) but with invari-
ant x|->v framed on “deeply” (see Fig. 4). Note that $Decider(p), and thus
$FrameDecider (p,x,Vv), are recursive predicates containing “themselves” as in-
variants, respectively: a decider in p requires another (or the same) decider in p
and ensures that there is another (or the same) decider in p after execution.
The pre- and post-conditions we give to the procedures are shown in Fig. 5.
For example, search requires a list $List(list; %a), a procedure at address
test as specified by $Decider, and an allocated cell at res. It ensures that the
list has not changed, address test still contains a “$Decider”, and res points to
a Boolean. As $Decider (test) contains a Hoare triple and appears itself inside
the pre- and postcondition of search, it demonstrates the use of nested triples.

recdef $List(x;%a) := x =0 * Ya = <>
| exists d, n, %b. x |-> d,n * $List(n;%b) * %a = <(x,d)> ++ %b;

recdef $Decider(p) := p |-> forall val,res. {res|->_ * $Decider(p)}
_(val,res) {exists r. res |-> r * r in <0>++<1> * $Decider(p)};

kringeldef $FrameDecider(p,x,v) := $Decider(p) @ x|->v;
Fig. 4. Predicate definitions for our example

The search procedure requires a test procedure satisfying $Decider (test);
such a test procedure uses only one heap cell res. However, when search is
first called in the main procedure, test points to isEql(value,_,_,test,2);
this test procedure, which satisfies $FrameDecider (test,value,3), also uses a
heap cell at value and thus has a bigger “footprint”. To overcome this mismatch
we apply the deep frame rule [9] in a statement annotation (explained above):

call search(list, test, res) "deepframe value |-> 3";

Like Verifast [8], Crowfoot needs annotations at (some) places in the code where
it is necessary to fold or unfold user-defined predicates. For instance, in the
search procedure, we need to unfold the list predicate at the beginning to be
able to see the structure of the list. Then, at the end of the procedure, we need
to fold the list back up to meet the postcondition. These steps are achieved with
ghost statements, where the ‘?’ arguments are instantiated by the tool:

ghost "unfold $List(?;7)"; ...body of procedure... ; ghost "fold $List(7;7)"

4 The four main parts of the verifier

1. Front end: Crowfoot’s front end reads in annotated programs and pro-
duces: (1.) an environment of predicate definitions, mapping predicate names
to the definitions given to them via the recdef or kringeldef keywords. (2.)
an environment of fixed procedure specifications, mapping the names of fixed
procedures to their specifications. (3.) verification conditions (VCs), in the form
of one Hoare triple for the body of each fixed procedure, such that if the triples
all hold then the program meets its specification. These three outputs are then
passed to the symbolic execution engine, which will attempt to prove the VCs.

2. Symbolic execution engine: Crowfoot proves Hoare triples about code
using symbolic execution with separation logic, based on ideas put forward in [3]
and now well established. The particular challenge in constructing Crowfoot’s
symbolic execution engine was of course to deal with statements such as eval
which make use of the higher order nature of the heap. A prover for entailments
between assertions is needed at various points during symbolic execution.

3. Entailment provers: Because we work with specifications nested inside
assertions, Crowfoot needs two (mutually dependent) entailment provers, unlike
existing tools: one for proving entailments between assertions, and another for
proving entailments between specifications. The SMT solver Yices [6] is used for
reasoning about pure formulae (integer and set constraints).

proc search(list, test, res)
forall %a.
pre: $List(list; %a) * $Decider(test) * res |-> _ ;
post: exists r.
$List(list; %a) * $Decider(test) * res |-> r * r in <O>++<1>; {...}

proc isEql(ptr, val, res, self, i)

forall v.
pre: res |-> _ * $FrameDecider(self,ptr,v) ;
post: i =1 x val =v * res |-> 1 x $FrameDecider(self,ptr,v)
| val != v * res |-> 0 * $FrameDecider(self,ptr,v)
| i!=1%*val =v * res |-> 0 x $FrameDecider(self,ptr,v); {...}

proc main(list)
forall %a. pre: $List(list; %a); post: $List(list; %a); {...}

Fig. 5. Specifications of procedures search, isEql and main

4. Graph output: To aid in the understanding of proofs, and more im-
portantly of failed proof attempts, Crowfoot can produce two kinds of graphical
output: trees showing the symbolic execution of procedures, and trees showing
proofs (and proof attempts) of entailments.

Crowfoot was written from scratch and consists of ~8.5k lines of OCaml code.
Examples we have verified include an idealised updatable web server [5], media
player plugin system, and a generic memoiser for recursive functions. Crowfoot
can be run on these examples, and the one in this paper, on our website [1].

References

1. The Crowfoot website. www.informatics.sussex.ac.uk/research/projects/
PL4HOStore/crowfoot/.

2. J. Berdine, C. Calcagno, and P. W. O’Hearn. Smallfoot: Modular automatic as-
sertion checking with separation logic. In FMCO, pages 115-137, 2005.

3. J. Berdine, C. Calcagno, and P. W. O’Hearn. Symbolic execution with separation
logic. In APLAS, pages 52—68, 2005.

4. L. Birkedal, N. Torp-Smith, and H. Yang. Semantics of separation-logic typing
and higher-order frame rules for Algol-like languages. LMCS, 2(5), 2006.

5. N. Charlton, B. Horsfall, and B. Reus. Formal reasoning about runtime code
update. In HotSWUp (Hot Topics in Software Upgrades), to appear, 2011.

6. B. Dutertre and L. D. Moura. The Yices SMT solver. Technical report, SRI
International, 2006.

7. K. Honda, N. Yoshida, and M. Berger. An observationally complete program logic
for imperative higher-order functions. In LICS, pages 270-279, 2005.

8. B. Jacobs, J. Smans, and F. Piessens. A quick tour of the VeriFast program verifier.
In APLAS, pages 304-311, 2010.

9. J. Schwinghammer, L. Birkedal, B. Reus, and H. Yang. Nested Hoare triples and
frame rules for higher-order store. In CSL, pages 440-454, 2009.

10. J. Schwinghammer, H. Yang, L. Birkedal, F. Pottier, and B. Reus. A semantic

foundation for hidden state. In FOSSACS, pages 2-17, 2010.

