Dcpo—Completion of posets

Zhao Dongsheng National Institute of Education Nanyang Technological University Singapore

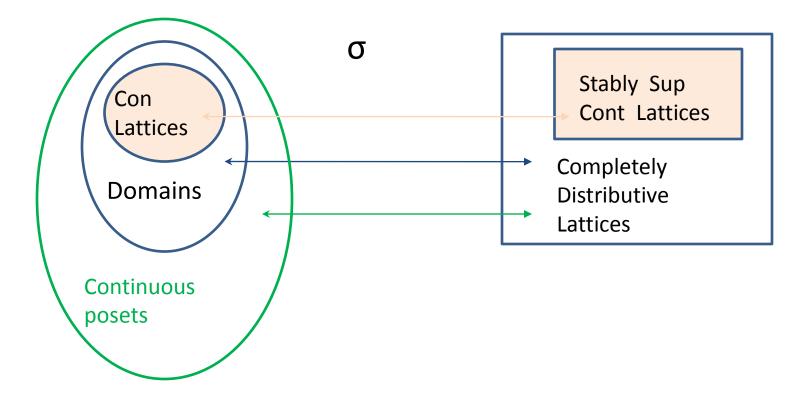
Fan Taihe Department of Mathematics Zhejiang Science and Tech University China

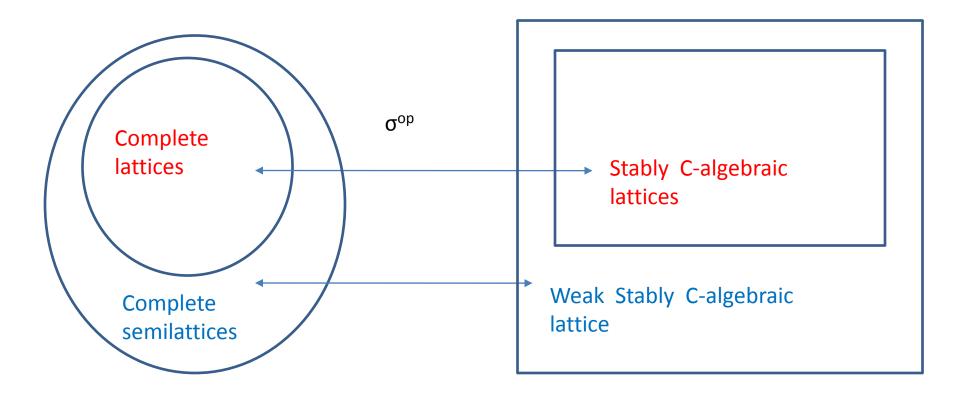
Outline

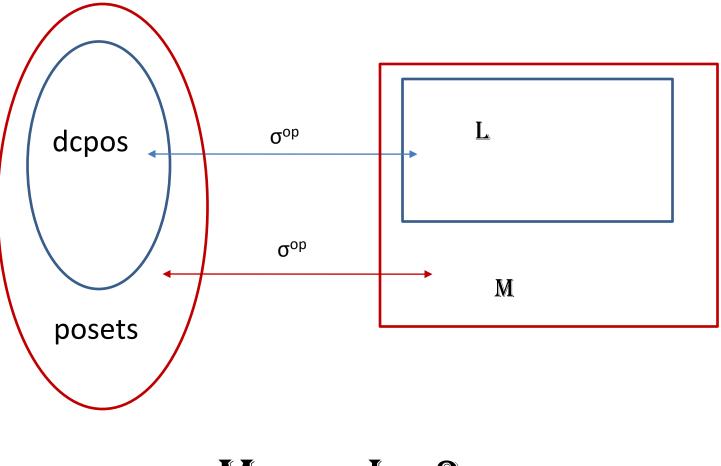
- Introduction
- D-completion of posets
- Properties
- Bounded complete dcpo completion
- Bounded sober spaces

1.Introduction

 $\begin{array}{l} \hline The \ Scott \ open \ (closed \) \ set \ lattices: \\ \hline For \ any \ poset \ P, \ let \ \sigma(P) \ (\sigma^{op}(P) \) \ be \ the \\ \hline complete \ lattice \ of \ all \ Scott \ open \ (\ closed \) \ sets \\ \hline of \ P \ . \end{array}$





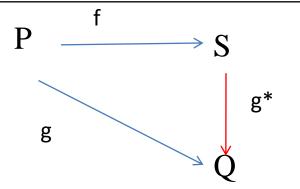


M = L ?

2. Dcpo – completion of posets

Definition

Let P be a poset. The D – completion of P is a dcpo S together with a Scott continuous mapping f: P \rightarrow S such that for any Scott continuous mapping g: P \rightarrow Q from P into a dcpo Q, there is a unique Scott continuous mapping g*: S \rightarrow Q such that g=g*f.



Every two D-completions of a poset are isomorphic !

Theorem 1.

For each poset P, the smallest subdcpo E(P) of σ^{op} (P) containing { $\downarrow x: x \in P$ } is a D- completion of P. The universal Scott continuous mapping $\eta: P \rightarrow E(P)$ sends x in P to $\downarrow x$.

Subdcpo--- a subset of a dcpo that is closed under taking supremum of directed sets.

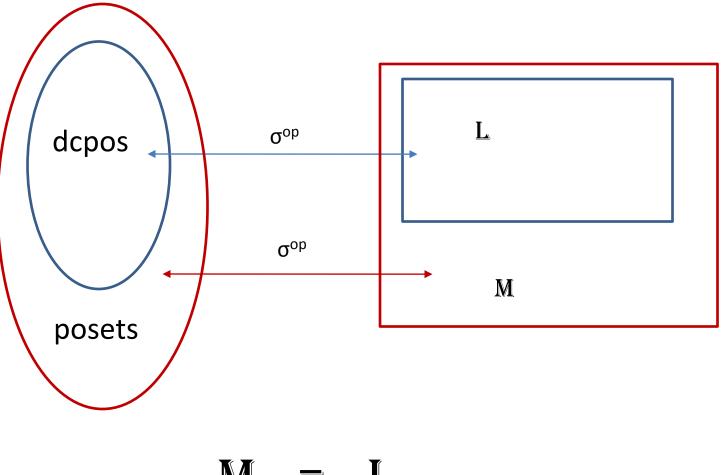
Let POS_d be the category of posets and the Scott continuous mappings.

Corollary

The subcategory DCPO of POS_d consisting of dcpos is fully reflexive in POS_d .

2. Properties of D(P)

Theorem 2. For any poset P, $\sigma^{op}(P) \simeq \sigma^{op}(E(P)).$



M = L

Theorem 3. A poset P is continuous if and only if E(P) is continuous.

Corollary If P is a continuous poset, then $E(P)=Spec(\sigma^{op}(P)).$

Spec(L): The set of co-prime elements of L

Theorem 4. A poset P is algebraic if and only if E(P) is algebraic.

3. Local dcpo-completion

Definition A poset P is called a local dcpo, if every upper bounded directed subset has a supremum in P.

Definition

Let P be a poset. A local dcpo completion of P is a local dcpo S together with a Scott continuous mapping $f: P \rightarrow S$ such that for any Scott continuous mapping $g: P \rightarrow Q$ from P into a local dcpo Q, there is a unique Scott continuous mapping $g^*: S \rightarrow Q$ such that $g=g^*f$.

Theorem 5

For any poset *P*, the set BE(*P*) of all the members *F* of E(*P*) which has an upper bound in *P* and the mapping f: $P \rightarrow BE(P)$, that sends *x* to $\downarrow x$, is a local dcpo completion of *P*.

Corollary

The subcategory LD of POS_d consisting of local dcpos is reflexive in POS_d .

4. Bounded sober spaces

Definition A T_0 space X is called **bounded** sober if every non empty co-prime closed subset of X that is upper bounded in the specialization order * is the closure of a point .

* If it is contained in some $cl\{x\}$.

Example If P is a continuous local dcpo, then ΣP is bounded sober.

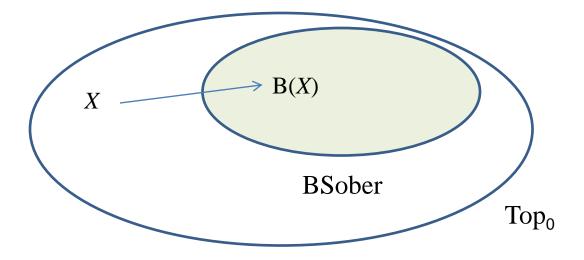
For a T_0 space X, let

B(X)={ F: F is a co-prime closed set and is upper bounded in the specialization order }.

For each open set U of X, let $H_U = \{ F \in B(X) : F \cap U \neq \otimes \}.$ Then $\{ H_U : U \in O(X) \}$ is topology on B(X).

Let B(X) denote this topological space.

Theorem 6B(X) is the reflection of X in the subcategoryBSober of bounded sobers spaces.



One question:

If *P* and *Q* are dcpos such that $\sigma(P)$ is isomorphic to $\sigma(Q)$, must *P* and *Q* be isomorphic?

THANK YOU!