

B. Reus (Univ. Sussex) and Thomas Streicher (TU Darmstadt)

September 2008

Aim of the talk

Synthetic Domain Theory (SDT) provides a logic for speaking about domains as particular sets.

Typical models are realizability toposes RT(A) (A a pca) together with a **dominance** true $\in \Sigma$.

SDT applies to **various** classes of domains. The general theory is well developed and also the particular case of *Domain Theory à la Scott*. But there are different models for it e.g. $\mathbf{RT}(K_2)$ or $\mathbf{RT}(\mathcal{P}\omega)$.

M. Hyland has suggested to consider/axiomatize domain theories of **different flavours**, e.g. stable, strongly stable . . . or **sequential**.

Previous Work

Longley and van Oosten have identified a pca $\mathcal{B} = [\mathbb{N} \to \mathbb{N}]$, a kind of "partial function realizability".

There is an obvious dominance Σ in $\mathrm{RT}(\mathcal{B})$. The ensuing category of domains contains strongly stable domains as a full subcategory.

The pca \mathcal{B} is a universal object of the category \mathcal{SA} of (countably based) concrete data structures and **sequential algorithms**.

One may consider \mathcal{SA} also as a **typed pca** and one can show that $RT(\mathcal{B}) \simeq RT(\mathcal{SA})$.

Problem

What are good axioms for Σ in $\mathrm{RT}(\mathcal{SA})$?

Basic Ideas of Our Approach

Replace SA by OSA, the wellpointed category of **observably sequential algorithms** (cells maybe filled with an error element \top).

 \mathcal{OSA} is equivalent to \mathcal{LBD} , Laird's category of **locally boolean domains**.

Since \mathcal{SA} is a **lluf** subcat of \mathcal{OSA} there is a universal object in \mathcal{OSA} , namely $U = [N \to N]$ where $N = \mathbb{N}_{\perp}^{\perp}$.

Thus, by a theorem of Lietz and S.

$$\mathrm{RT}(\mathcal{OSA}) \simeq \mathrm{RT}(\mathcal{U})$$
 topos

with \mathcal{U} the (untyped) pca of global elements of U .

Refinement of the Dominance (1)

J. Laird's **key observation** is that in $(\mathcal{O})SA$ the dominance Σ (one cell and one value) can be **decomposed** as

$$\Sigma \cong [0 \rightarrow 0]$$

where 0 has one cell and no value.

NB

In OSA type O has global elements \bot and \top .

In \mathcal{OSA} the type $\Sigma = [0 \rightarrow 0]$ has globale elements \bot , id and \top .

 \top absent in \mathcal{SA} .

Refinement of the Dominance (2)

 $\operatorname{Asm}(\mathcal{OSA})$ and $\operatorname{Asm}(\mathcal{U})$ are the respective full subcats of $\operatorname{RT}(\mathcal{OSA})$ and $\operatorname{RT}(\mathcal{U})$ on $\neg\neg$ -separated object.

For $A \in \mathcal{OSA}$ let $\Delta(A)$ — or simply A — be the projective modest set whose underlying set are the global elements of A, whose type of realizers is $A \in \mathcal{OSA}$ and $||a||_{\Delta(A)} = \{a\}$.

Although id $\in \Delta(\Sigma)$ is a dominance

 $\top \in O$ is **not** a dominance

since 0 has **no meet** operation $\wedge : 0 \times 0 \rightarrow 0$.

Still $T \in O$ classifies a pullback stable class of monos which, however, are not closed under composition.

Refinement of the Dominance (3)

We can recover Σ and Σ_c as subobjects of $[O \rightarrow O]$ as follows

$$\Sigma = \{ f \in [\mathsf{O} \to \mathsf{O}] \mid f(\bot) = \bot \} \qquad \Sigma_c = \{ f \in [\mathsf{O} \to \mathsf{O}] \mid f(\top) = \top \}$$

NB

- (1) Inclusion into $[0 \rightarrow 0]$ are not split!
- (2) Both Σ and Σ_c are closed under composition to be understood as \wedge and \vee respectively.

Reconstructing the Various Orderings

For $X \in \mathbf{RT}(\mathcal{OSA})$ we may define the orderings

$$x \sqsubseteq y \quad \text{iff} \quad \forall p \in [X \to \mathsf{O}] \Big(p(x) = \top \Rightarrow p(y) = \top \Big) \\ x \leq_s y \quad \text{iff} \quad \exists f \in [\Sigma \to X] \Big(f(\bot) = x \land f(\mathsf{id}) = y \Big) \\ x \leq_c y \quad \text{iff} \quad \exists f \in [\Sigma_c \to X] \Big(f(\mathsf{id}) = x \land f(\top) = y \Big) \\ x \leq_b y \quad \text{iff} \quad \exists f \in [\mathsf{O} \to X] \Big(f(\bot) = x \land f(\top) = y \Big)$$

Theorem

Recalling that $\mathcal{LBD} \simeq \mathcal{OSA}$ for $X \in \mathcal{LBD}$ the above orders on $\Delta(X)$ coincide with the *extensional*, *stable*, *costable* and *bistable* order on X, respectively.

J. Laird pointed out a mistake in a previous wrong variant.

Various (Bi)Liftings

In a lccc \mathbb{C} every $i: 1 \to L$ induces a **lifting** operation

Instantiating i by the inclusion of id into $[O \rightarrow O]$, Σ and Σ_c , respectively, we get endofunctors

$$(-)_{\perp}^{\top}$$
 $(-)_{\perp}$ $(-)^{\top}$

on $RT(\mathcal{LBD})$ called **bilifting**, **lifting** and **colifting**, respectively.

Fixpoints of (Bi)Liftings

Theorem

All those functors admit final (and thus also initial) fixpoints inherited from the **bifree** fixpoint $\bar{\omega}$ of $(-)^{\top}$ in \mathcal{LBD} .

The stable, costable and extensional order of $\bar{\omega} \in \mathcal{LBD}$ look as follows

final fixpoint of $(-)_{\perp}$ obtained by removing the n^{\top} 's final fixpoint of $(-)^{\top}$ obtained by removing the n's

Synthetic Construction of Fixpoints

 $\bar{\omega}$ as the set of all $f:\mathbb{N} \to \mathsf{O}^\mathsf{O}$ such that

$$\forall j < i \ \forall u \in O \ \Big(f(i)(u) = u \Rightarrow f(j)(u) = u \Big)$$

$$\bar{\omega}_s = \{ f \in \bar{\omega} \mid \forall n \in \mathbb{N}. \ f(n) \in \Sigma \}$$

$$\bar{\omega}_c = \{ f \in \bar{\omega} \mid \forall n \in \mathbb{N}. \ f(n) \in \Sigma_c \}$$

intitial algebras can be carved out as least subalgebras

Tentative Axioms (1)

We observe a few facts about or model and state them as axioms. Whether they are enough is necessarily an **empiric/pragmatic** issue since axiomatisations can hardly be categorical (pun intended!).

(Axiom 0)
$$\forall u, v \in O \ (\neg \neg u = v \Rightarrow u = v)$$

says that equality on 0 is ¬¬-closed

(Axiom 1)
$$\forall u, v \in O. ((\top = u) \Leftrightarrow (\top = v)) \Rightarrow u = v$$
 says that $\lambda u \in O. (\top = u) : O \to \Omega$ is monic.

(Axiom 2)
$$\forall F \in O^{\mathbb{O}^{\mathbb{N}}}. (F \neq \lambda f. \bot \land F \neq \lambda f. \top) \Rightarrow \exists n \in \mathbb{N}. F = \pi_n$$
 all non-constant $f: O^{\mathbb{N}} \to O$ are projections (realized by the ω -ary catch of \mathcal{LBD}).

Tentative Axioms (2)

One can show that Σ is a subobject of Ω where $u \in \Sigma$ is identified with $(u(\top) = \top)$.

(Axiom 3) $\forall p \in \Sigma. \forall q \in \Omega. \ (p \Rightarrow (q \in \Sigma)) \Rightarrow (p \land q) \in \Sigma$ says that Σ is a dominance.

(Axiom4)
$$\forall F : \Sigma^{\mathbb{N}} \to \Sigma. (F(\lambda n. \top) = \top) \Rightarrow$$

 $\neg \neg \exists K \in \mathcal{P}_f(\mathbb{N}). \forall f \in \Sigma^{\mathbb{N}}. F(f) = \top \Leftrightarrow \forall k \in K. f(k) = \top$

expresses continuity (c.f. Scott's axiom).

Tentative Axioms (3)

A variant of (Axiom 4) with $[0 \rightarrow 0]$ instead of Σ is

(Axiom5)
$$\forall F : [\mathsf{O} \to \mathsf{O}]^{\mathbb{N}} \to \mathsf{O}. \ \neg \neg \exists \langle n_1, \dots n_k \rangle \in \mathbb{N}^*. \ \neg \neg \exists u \in \mathsf{O}.$$

$$\forall f \in [\mathsf{O} \to \mathsf{O}]^{\mathbb{N}}. \ F(f) = (f(n_1) \circ \dots \circ f(n_k))(u)$$

Open Questions

• How are the notions of completeness, induced by the various inclusions of initial into final algebras, related?

• Are our axioms strong enough for showing that retracts of $U = [\mathbb{N}^\top] \to \mathbb{N}^\top$ are closed under the various type formers?