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coalgebras

coalgebra X — T'X we have for every 1" a notion of T-bisimilarity
T : Set — Set weak-pullback preserving functor
Paradimatic example: T'= P (powerset-functor: coalgebras are Kripke frames)

Other examples: Labelling of states and transitions (input and output),
deterministic automata, probabilistic transition systems, stochastic transtition
systems, arbitrary combinations of these: infinitely many examples

Non-example: neighbourhood frames (T'X = 22X) are coalgebras for a non
weak-pullback-preserving functor



weak pullback preserving functors ...

... lift from Set to Rel (sets with relations as arrows),
ie, for each T : Set — Set we have T : Rel — Rel.

A relation is a span, to which we can apply T

R TR TR
RN N / | \
X Y TX TY T
7N
TX TY

T is a functor iff T preserves weak pullbacks



Moss’s coalgebraic logic

Given T
The language L is closed under Boolean operations and

fa €T, ,LthenVa € L

T., is the finitary version of T', technically, 7, X = |J{TY | Y C., X}.
Example: P, X is the set of all finite subsets of X

zlFVa < (£(z),a) € T(F)

Example (T = P): Moss’s logic is equi-expressive with the basic modal logic:
rlFVe & zlFOVdA{A\Ca|a € ¢}

Thm(Moss): £ is invariant under bisimulation. The original version with infinitary
conjunctions (no other Booleans needed) characterises bisimilarity
(Hennessy-Milner property).



algebraic reformulation of the semantics

lifted T(e) = is PTX & 17PXx

c c
X/ \PX T

TX TPX
Define L = FT,U (where U : BA — Set and F' its left-adjoint).

p. TPX — PTX induces a BA-morphism LPX — PTX.

The semantics of L wrt £ : X — T X Is given by the ‘complex algebra’ of X:

pe=¢—1

LPX PTX PX [p isthe semantics of V]
LI-1 [-1
LL L zlFVa < £(x) € px(a)

Notation: P : Set — Set, P : Set®® — Set, P : Set® — BA



examples

/e\ lifted T(e)=E¢E is PTX X 17px
/ \
X PX TX TP

X

Examples for a€®d or a € px(P):

T =P: Ve € a.dgp € P.x € ¢ and vice versa
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examples

/e\ lifted T(e)=¢E is PTX X 17px
/ \
X PX TX TP

X

Examples for a€® or a € px(P):

TX ={d: X — [0,1] | d(x) = 0 dmost everywhere }
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the proof system (1’ restricts to finite sets)

Notation:

L a,b,c,... T, | a,B8,7v...
PuL b, ... TOPLL | WV, ...
P,IL,L | A B, C ...

If T" preserves finite sets (maps finite sets to finite sets):

(V1) From a=g8infer- Va X V3
(V2) MVal|aec A} K V{V(T'A)(®P) [P € SRD(A)}
(V3) V(T'V)(®) 2 V{Va|acd}




(V2) A{Va|aec A} =\/{V(T N\)(®)| > € SRD(A)}

Remark: This axiom is important: it allows do eliminate conjunctions (and the essence of the
completeness proof will be to show that every L-formula is interderivable with a conjunction free
normal form). This has repercussions, eg, in the modal u-calculus where alternating automata

are equivalent to non-deterministic automata.

pox : TPX — PTX

Example: A= {Oz,ﬁ} c PTX, T=7P, o= {al,ag},ﬁ = {bl, bz}

What can we say about Va A V3 ?

® € SRD(A) iff & € TPX suchthat p(d) D A



the proof system (general case: infinitary rules)

For an arbitrary (weak pullback preserving) functor 7" : Set — Set

<b b1,b A —
- %(L(jlavé) € }((){,,8) c7

(v]_) {bl

) {(VITN)(P) Za| P e SRD(A)}

(V2 MVa|ae A} <a

{Va < a | aEd}

V3) TTW@) <a




reminder: completeness of the basic modal logic K

(in the style of Domain Theory in Logical Form)

BA Set

Define K : BA — BA as follows:
K(A) is generated by Oa, a € A, modulo O(a Ab) = Oa AOb, OT = T.

Note: Every ‘variable’ a, b is under the scope of exactly one modality

Thm: KPX — PPX, Oa— {bC a}, isanisomorphism for finite sets X.

Cor: a) One-step completeness: KPX — PPX Isinjective for all X.
b) Completeness of K.
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remark on ‘one-step completeness’

(Now writing T for P)
Show

KPX — PTX injective (completeness via normal form)
or

TX — SKPX surjective (completeness via building a satisfying model)
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M and the one-step proof system

What is the analog of K in our case?

Define M : BA — BA

MA is given by

generators: Vo, a € T, UA

modulo: (V1)-(V3)

In the paper we make precise what we mean by ‘modulo’ here: we call it the
one-step proof system
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final coalgebra sequence and initial algebra sequence

1—Pl1—--—P1~—---—7PY1 canonical model

2—K2—: - —K"2—- - —K¥2 L indenbaum algebra

[two references: Abramsky’89, Ghilardi’'95]
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final coalgebra sequence and initial algebra sequence

1—7P1 Pl PY1 canonical model

2—K2 e K"2 e K¥2 Lindenbaum algebra

P1—PPl—:--—PP"1 - —PPpY1 canonical extension
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final coalgebra sequence and initial algebra sequence

1—7P1 Pl PY1 canonical model

2—K2 e K"2 e K% Lindenbaum algebra

112
%
%

P1—PPl—:--—PP"1 - —PPpY1 canonical extension
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from one-step completeness to completeness

L: Moss’s language, £;: formulas of depth ¢

Lo L1 Lo L
Lo/=——L1/= Lo/= L)=

2 M2 M?22 M

P1 PT1 PT21 X PT*1
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from one-step completeness to completeness needs ...

Ln/=— M"2 isiso [Derivations of - a = b of terms a, b of depth n can be performed
without using terms of depth > n. Follows from the fact that the logic is described by a one-step
proof system.]

M is a functor [Given a BA-morphism f : A — B, a derivation of a = &’ in the one-step proof
system over A can be mapped to a derivation of f(a) = f(a’) in the one-step proof system over
B.]

M is finitary and preserves embeddings [Given an injective BA-morphism f : A — B, a
derivation of f(a) = f(d’) in the one-step proof system over B can be mapped to a derivation of
a = a’ in the one-step proof system over A (proof uses that for a finite BA A an embedding

A — B has a half-inverse (which follows eg from the fact that complete Boolean algebras are
injective))]
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one-step completeness

Show ¢ : MIPX — PT X s injective. Idea: Find a half-inverse.

How can we go from PT'X to MIPX? Recall: MPX is genereated by elements in TPX
(and PT' X is generated by elements in T'X).

So we need T'X — T PX, which is provided by applying Tto {} : X — PX.
Solet G ={V(T{}(«) | « € TLX}. Note that §(V(T{}(a)) = {a}.
We have to show Va € MPX.a =V{VB € G| V3 <al.

Casel:a=Vp3,B8cT,PX. Uses (V3): V(T V)(®) X \{Va | aed}
Case 2: a = V. Uses (V4): FromE T <\/¢inferk T X \/{Va | a € T¢}

Case 3: a = A 3. Uses (V2): A{Va|ae A} X \/{V(T N)(®P)| P e SRD(A)}
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conclusion

Given a category X and a functor T : X — X, what can we say about logics
for T'-coalgebras? [in the talk: X = Set.]

What is the propositional ‘base logic’? Choose a category A of algebras with
appropriate P : X — A [inthe talk: A = BA, P powerset.]

Extend the base logic by modal operators and axioms: choose a functor
L : BA — BA and semantics 6 : LP — PT [§inuduces map Coalg(T) — Alg(L).]

One of the strength of this approach is that it is parametric in the base
categories. For example, we want to look at (future work):

A could be distributive lattices, complete atomic Boolean algebras

X could be posets
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