Completeness for Moss's Coalgebraic Logic (Boolean version)

Clemens Kupke, *Alexander Kurz*, Yde Venema 23. 9. 2008

coalgebra $X \to TX$ we have for every T a notion of T-bisimilarity

 $T: Set \rightarrow Set$ weak-pullback preserving functor

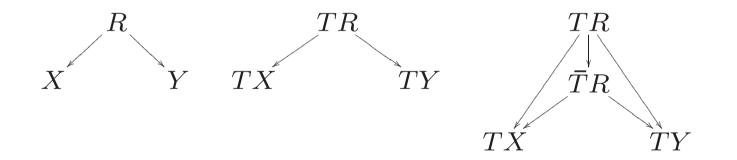
Paradimatic example: $T = \mathcal{P}$ (powerset-functor: coalgebras are Kripke frames)

Other examples: Labelling of states and transitions (input and output), deterministic automata, probabilistic transition systems, stochastic transition systems, arbitrary combinations of these: infinitely many examples

Non-example: neighbourhood frames ($TX = 2^{2^X}$) are coalgebras for a non weak-pullback-preserving functor

... lift from Set to Rel (sets with relations as arrows), ie, for each T : Set \rightarrow Set we have \overline{T} : Rel \rightarrow Rel.

A relation is a span, to which we can apply ${\cal T}$



 \bar{T} is a functor iff T preserves weak pullbacks

Given T

The language \mathcal{L} is closed under Boolean operations and

if $\alpha \in T_{\omega}\mathcal{L}$ then $\nabla \alpha \in \mathcal{L}$

 T_{ω} is the finitary version of *T*, technically, $T_{\omega}X = \bigcup \{TY \mid Y \subseteq_{\omega} X\}$. Example: $\mathcal{P}_{\omega}X$ is the set of all *finite* subsets of *X*

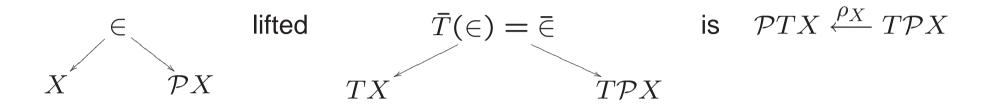
$x \Vdash \nabla \alpha \iff (\xi(x), \alpha) \in \overline{T}(\Vdash)$

Example (T = P): Moss's logic is equi-expressive with the basic modal logic:

 $x \Vdash \nabla \phi \iff x \Vdash \Box \bigvee \phi \land \{ \bigwedge \Diamond a \mid a \in \phi \}$

Thm(Moss): \mathcal{L} is invariant under bisimulation. The original version with infinitary conjunctions (no other Booleans needed) characterises bisimilarity (Hennessy-Milner property).

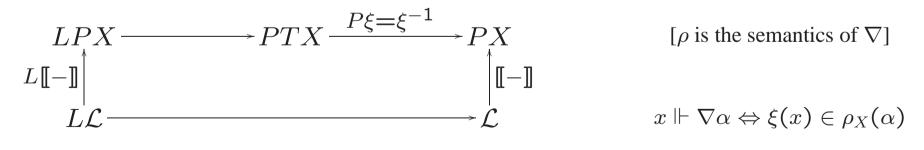
algebraic reformulation of the semantics



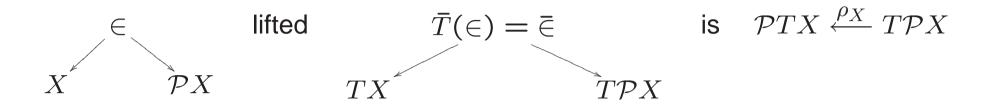
Define $L = FT_{\omega}U$ (where $U : BA \rightarrow Set$ and F its left-adjoint).

 $\rho: TPX \to PTX$ induces a BA-morphism $LPX \to PTX$.

The semantics of \mathcal{L} wrt $\xi : X \to TX$ is given by the 'complex algebra' of X:

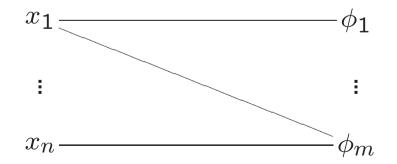


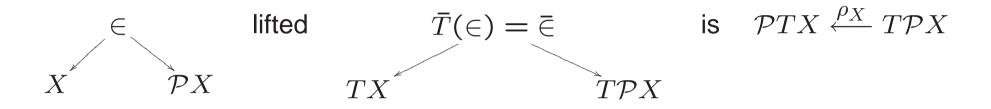
Notation: \mathcal{P} : Set \rightarrow Set, P : Set^{op} \rightarrow Set, \mathbb{P} : Set^{op} \rightarrow BA



Examples for $\alpha \in \Phi$ or $\alpha \in \rho_X(\Phi)$:

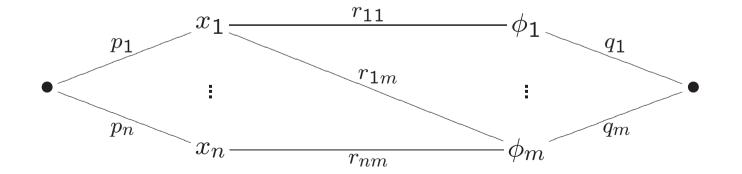
 $T = \mathcal{P}$: $\forall x \in \alpha . \exists \phi \in \Phi . x \in \phi \text{ and vice versa}$





Examples for $\alpha \in \Phi$ or $\alpha \in \rho_X(\Phi)$:

 $TX = \{d : X \to [0, 1] \mid d(x) = 0 \text{ almost everywhere } \}$



6

Notation:

$$\begin{array}{c|c} \mathcal{L} & a, b, c, \dots & T_{\omega} \mathcal{L} & \alpha, \beta, \gamma \dots \\ \mathcal{P}_{\omega} \mathcal{L} & \phi, \psi, \dots & T_{\omega} \mathcal{P}_{\omega} \mathcal{L} & \Phi, \Psi, \dots \\ \mathcal{P}_{\omega} T_{\omega} \mathcal{L} & A, B, C \dots & & & \\ \end{array}$$

If T preserves finite sets (maps finite sets to finite sets):

 $\begin{array}{ll} (\nabla 1) & \operatorname{From} \alpha \overline{\preceq} \beta \text{ infer} \vdash \nabla \alpha \preceq \nabla \beta \\ (\nabla 2) & \wedge \{ \nabla \alpha \mid \alpha \in A \} \preceq \lor \{ \nabla (T \wedge) (\Phi) \mid \Phi \in SRD(A) \} \\ (\nabla 3) & \nabla (T \lor) (\Phi) \preceq \lor \{ \nabla \alpha \mid \alpha \overline{\in} \Phi \} \end{array}$

$(\nabla 2) \quad \bigwedge \{ \nabla \alpha \mid \alpha \in A \} = \bigvee \{ \nabla (T \bigwedge) (\Phi) \mid \Phi \in SRD(A) \}$

Remark: This axiom is important: it allows do eliminate conjunctions (and the essence of the completeness proof will be to show that every \mathcal{L} -formula is interderivable with a conjunction free normal form). This has repercussions, eg, in the modal μ -calculus where alternating automata are equivalent to non-deterministic automata.

 $\rho_X : TPX \to PTX$

Example: $A = \{\alpha, \beta\} \in PTX, \quad T = \mathcal{P}, \quad \alpha = \{a_1, a_2\}, \beta = \{b_1, b_2\}$

What can we say about $\nabla \alpha \wedge \nabla \beta$?

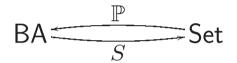
 $\Phi \in SRD(A)$ iff $\Phi \in TPX$ such that $\rho(\Phi) \supseteq A$

For an arbitrary (weak pullback preserving) functor T: Set \rightarrow Set

$$(\nabla 1) \quad \frac{\{b_1 \leq b_2 \mid (b_1, b_2) \in Z\}}{\nabla \alpha \leq \nabla \beta} (\alpha, \beta) \in \overline{Z}$$
$$(\nabla 2) \quad \frac{\{\nabla (T \land)(\Phi) \leq a \mid \Phi \in SRD(A)\}}{\land \{\nabla \alpha \mid \alpha \in A\} \leq a}$$
$$(\nabla 3) \quad \frac{\{\nabla \alpha \leq a \mid \alpha \in \Phi\}}{\nabla (T \lor)(\Phi) \leq a}$$

reminder: completeness of the basic modal logic ${\bf K}$

(in the style of Domain Theory in Logical Form)



Define $\mathbb{K}:\mathsf{BA}\to\mathsf{BA}$ as follows:

 $\mathbb{K}(\mathbb{A})$ is generated by $\Box a, a \in \mathbb{A}$, modulo $\Box(a \land b) = \Box a \land \Box b, \Box \top = \top$.

Note: Every 'variable' *a*, *b* is under the scope of exactly one modality

Thm: $\mathbb{KP}X \to \mathbb{P}PX$, $\Box a \mapsto \{b \subseteq a\}$, is an isomorphism for finite sets X.

Cor: a) One-step completeness: $\mathbb{KP}X \to \mathbb{P}PX$ is injective for all X. b) Completeness of **K**. (Now writing T for \mathcal{P})

Show

 $\mathbb{KP}X \to \mathbb{P}TX$ injective (completeness via normal form)

or

 $TX \rightarrow S\mathbb{KP}X$ surjective (completeness via building a satisfying model)

What is the analog of \mathbb{K} in our case?

Define $\mathbb{M}:\mathsf{BA}\to\mathsf{BA}$

 \mathbb{MA} is given by

```
generators: \nabla \alpha, \alpha \in T_{\omega}U\mathbb{A}
```

```
modulo: (\nabla 1)-(\nabla 3)
```

In the paper we make precise what we mean by 'modulo' here: we call it the *one-step proof system*

final coalgebra sequence and initial algebra sequence

$$1 \leftarrow \mathcal{P} 1 \leftarrow \cdots \leftarrow \mathcal{P}^n 1 \leftarrow \cdots \leftarrow \mathcal{P}^\omega 1$$
 canonical model

$$2 \longrightarrow \mathbb{K} 2 \longrightarrow \mathbb{K}^n 2 \longrightarrow \mathbb{K}^\omega 2$$
 Lindenbaum algebra

[two references: Abramsky'89, Ghilardi'95]

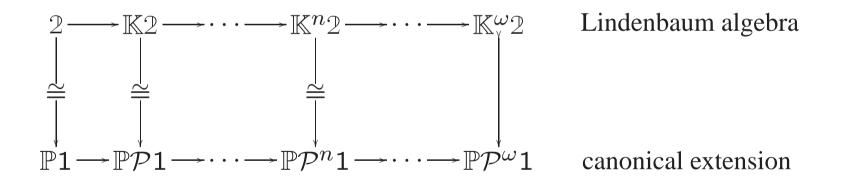
final coalgebra sequence and initial algebra sequence

 $2 \longrightarrow \mathbb{K}^2 \longrightarrow \mathbb{K}^n 2 \longrightarrow \mathbb{K}^\omega 2$ Lindenbaum algebra

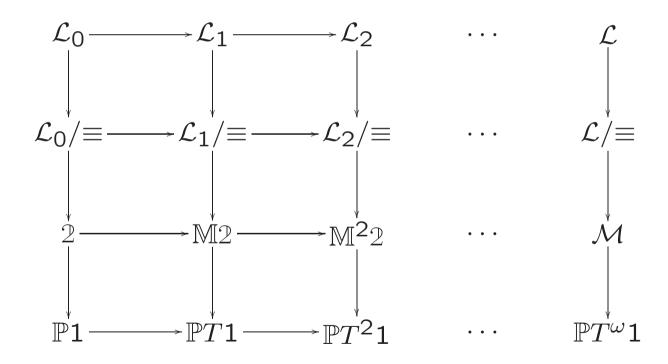
 $\mathbb{P}1 \longrightarrow \mathbb{P}\mathcal{P}1 \longrightarrow \cdots \longrightarrow \mathbb{P}\mathcal{P}^n 1 \longrightarrow \cdots \longrightarrow \mathbb{P}\mathcal{P}^{\omega}1 \qquad \text{canonical extension}$

final coalgebra sequence and initial algebra sequence





 \mathcal{L} : Moss's language, \mathcal{L}_i : formulas of depth i



 $\mathcal{L}_n /\equiv \longrightarrow \mathbb{M}^n 2$ is iso [Derivations of $\vdash a \equiv b$ of terms a, b of depth n can be performed without using terms of depth > n. Follows from the fact that the logic is described by a one-step proof system.]

M is a functor [Given a BA-morphism $f : \mathbb{A} \to \mathbb{B}$, a derivation of $a \equiv a'$ in the one-step proof system over \mathbb{A} can be mapped to a derivation of $f(a) \equiv f(a')$ in the one-step proof system over \mathbb{B} .]

M is finitary and preserves embeddings [Given an injective BA-morphism $f : \mathbb{A} \to \mathbb{B}$, a derivation of $f(a) \equiv f(a')$ in the one-step proof system over B can be mapped to a derivation of $a \equiv a'$ in the one-step proof system over A (proof uses that for a finite BA A an embedding $\mathbb{A} \to \mathbb{B}$ has a half-inverse (which follows eg from the fact that complete Boolean algebras are injective))]

Show $\delta : \mathbb{MP}X \to \mathbb{P}TX$ is injective. Idea: Find a half-inverse.

How can we go from $\mathbb{P}TX$ to $\mathbb{MP}X$? Recall: $\mathbb{MP}X$ is generated by elements in TPX (and $\mathbb{P}TX$ is generated by elements in TX).

So we need $TX \to TPX$, which is provided by applying T to $\{\} : X \to PX$.

So let $\mathcal{G} = \{ \nabla(T\{\}(\alpha) \mid \alpha \in T_{\omega}X \}$. Note that $\delta(\nabla(T\{\}(\alpha)) = \{\alpha\}$.

We have to show $\forall a \in \mathbb{MP}X. a = \bigvee \{ \nabla \beta \in \mathcal{G} \mid \nabla \beta \leq a \}.$

Case 1: $a = \nabla \beta, \beta \in T_{\omega}PX$.Uses $(\nabla 3)$: $\nabla (T \lor)(\Phi) \preceq \lor \{\nabla \alpha \mid \alpha \in \Phi\}$ Case 2: $a = \neg \nabla \beta$.Uses $(\nabla 4)$: From $\vdash \top \preceq \lor \phi$ infer $\vdash \top \preceq \lor \{\nabla \alpha \mid \alpha \in T\phi\}$ Case 3: $a = \bigwedge \beta_i$.Uses $(\nabla 2)$: $\land \{\nabla \alpha \mid \alpha \in A\} \preceq \lor \{\nabla (T \land)(\Phi) \mid \Phi \in SRD(A)\}$

Given a category \mathcal{X} and a functor $T : \mathcal{X} \to \mathcal{X}$, what can we say about logics for *T*-coalgebras? [in the talk: $\mathcal{X} = Set$.]

What is the propositional 'base logic'? Choose a category \mathcal{A} of algebras with appropriate $P : \mathcal{X} \to \mathcal{A}$ [in the talk: $\mathcal{A} = BA$, P powerset.]

Extend the base logic by modal operators and axioms: choose a functor $L : BA \rightarrow BA$ and semantics $\delta : LP \rightarrow PT$ [δ involves map $Coalg(T) \rightarrow Alg(L)$.]

One of the strength of this approach is that it is parametric in the base categories. For example, we want to look at (future work):

 $\ensuremath{\mathcal{A}}$ could be distributive lattices, complete atomic Boolean algebras

 ${\mathcal X}$ could be posets