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coalgebras

coalgebra X → TX we have for every T a notion of T -bisimilarity

T : Set→ Set weak-pullback preserving functor

Paradimatic example: T = P (powerset-functor: coalgebras are Kripke frames)

Other examples: Labelling of states and transitions (input and output),
deterministic automata, probabilistic transition systems, stochastic transtition
systems, arbitrary combinations of these: infinitely many examples

Non-example: neighbourhood frames (TX = 22X ) are coalgebras for a non
weak-pullback-preserving functor
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weak pullback preserving functors ...

... lift from Set to Rel (sets with relations as arrows),
ie, for each T : Set→ Set we have T̄ : Rel→ Rel.

A relation is a span, to which we can apply T
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T̄ is a functor iff T preserves weak pullbacks
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Moss’s coalgebraic logic

Given T

The language L is closed under Boolean operations and

if α ∈ TωL then ∇α ∈ L

Tω is the finitary version of T , technically, TωX =
⋃
{TY | Y ⊆ω X}.

Example: PωX is the set of all finite subsets of X

x 
 ∇α ⇔ (ξ(x), α) ∈ T̄ (
)

Example (T = P): Moss’s logic is equi-expressive with the basic modal logic:

x 
 ∇φ ⇔ x 
 2
∨
φ ∧ {

∧
3a | a ∈ φ}

Thm(Moss): L is invariant under bisimulation. The original version with infinitary
conjunctions (no other Booleans needed) characterises bisimilarity
(Hennessy-Milner property).
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algebraic reformulation of the semantics
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TX TPX

is PTX
ρX←− TPX

Define L = FTωU (where U : BA→ Set and F its left-adjoint).

ρ : TPX → PTX induces a BA-morphism LPX → PTX.

The semantics of L wrt ξ : X → TX is given by the ‘complex algebra’ of X:

LPX //PTX
Pξ=ξ−1

//PX [ρ is the semantics of∇]

LL //

L[[−]]

OO

L

[[−]]

OO

x 
 ∇α⇔ ξ(x) ∈ ρX(α)

Notation: P : Set→ Set, P : Setop → Set, P : Setop → BA
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examples
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TX TPX

is PTX
ρX←− TPX

Examples for α∈̄Φ or α ∈ ρX(Φ):

T = P : ∀x ∈ α.∃φ ∈ Φ.x ∈ φ and vice versa
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... ...

xn φm
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examples
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TX TPX

is PTX
ρX←− TPX

Examples for α∈̄Φ or α ∈ ρX(Φ):

TX = {d : X → [0,1] | d(x) = 0 almost everywhere }
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the proof system (T restricts to finite sets)

Notation:

L a, b, c, . . . TωL α, β, γ . . .

PωL φ, ψ, . . . TωPωL Φ,Ψ, . . .

PωTωL A,B,C . . .

If T preserves finite sets (maps finite sets to finite sets):

(∇1) From α�β infer ⊢ ∇α � ∇β

(∇2)
∧
{∇α | α ∈ A} �

∨
{∇(T

∧
)(Φ) | Φ ∈ SRD(A)}

(∇3) ∇(T
∨
)(Φ) �

∨
{∇α | α∈Φ}
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(∇2)
∧
{∇α | α ∈ A} =

∨
{∇(T

∧
)(Φ) | Φ ∈ SRD(A)}

Remark: This axiom is important: it allows do eliminate conjunctions (and the essence of the

completeness proof will be to show that every L-formula is interderivable with a conjunction free

normal form). This has repercussions, eg, in the modal µ-calculus where alternating automata

are equivalent to non-deterministic automata.

ρX : TPX → PTX

Example: A = {α, β} ∈ PTX, T = P, α = {a1, a2}, β = {b1, b2}

What can we say about∇α ∧∇β ?

Φ ∈ SRD(A) iff Φ ∈ TPX such that ρ(Φ) ⊇ A
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the proof system (general case: infinitary rules)

For an arbitrary (weak pullback preserving) functor T : Set→ Set

{b1 � b2 | (b1, b2) ∈ Z}(∇1) (α, β) ∈ Z∇α � ∇β

{∇(T
∧
)(Φ) � a | Φ ∈ SRD(A)}

(∇2) ∧
{∇α | α ∈ A} � a

{∇α � a | α∈Φ}
(∇3)

∇(T
∨
)(Φ) � a

9



reminder: completeness of the basic modal logic K

(in the style of Domain Theory in Logical Form)

BA
S

11 Set
P

qq

Define K : BA→ BA as follows:

K(A) is generated by 2a, a ∈ A, modulo 2(a ∧ b) = 2a ∧ 2b, 2⊤ = ⊤.

Note: Every ‘variable’ a, b is under the scope of exactly one modality

Thm: KPX → PPX, 2a 7→ {b ⊆ a}, is an isomorphism for finite sets X.

Cor: a) One-step completeness: KPX → PPX is injective for all X.
b) Completeness of K.
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remark on ‘one-step completeness’

(Now writing T for P)

Show

KPX → PTX injective (completeness via normal form)

or

TX → SKPX surjective (completeness via building a satisfying model)
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M and the one-step proof system

What is the analog of K in our case?

Define M : BA→ BA

MA is given by

generators: ∇α, α ∈ TωUA

modulo: (∇1)-(∇3)

In the paper we make precise what we mean by ‘modulo’ here: we call it the
one-step proof system

12



final coalgebra sequence and initial algebra sequence

1 P1oo . . .oo Pn1oo . . .oo Pω1oo canonical model

2 // K2 // . . . // Kn2 // . . . // Kω2 Lindenbaum algebra

[two references: Abramsky’89, Ghilardi’95]
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final coalgebra sequence and initial algebra sequence

1 P1oo . . .oo Pn1oo . . .oo Pω1oo canonical model

2 // K2 // . . . // Kn2 // . . . // Kω2 Lindenbaum algebra

P1 // PP1 // . . . // PPn1 // . . . // PPω1 canonical extension

14



final coalgebra sequence and initial algebra sequence

1 P1oo . . .oo Pn1oo . . .oo Pω1oo canonical model

2 //

∼=

��

K2 //

∼=

��

. . . // Kn2 //

∼=

��

. . . // Kω2��
��

Lindenbaum algebra

P1 // PP1 // . . . // PPn1 // . . . // PPω1 canonical extension
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from one-step completeness to completeness

L: Moss’s language, Li: formulas of depth i

L0
//

��

L1

��

//L2

��

. . . L

��

L0/≡ //

��

L1/≡

��

//L2/≡

��

. . . L/≡

��2 //

��

M2 //

��

M22
��

. . . M

��

P1 // PT1 //
PT21 . . . PTω1
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from one-step completeness to completeness needs ...

Ln/≡ −→ Mn2 is iso [Derivations of ⊢ a ≡ b of terms a, b of depth n can be performed

without using terms of depth > n. Follows from the fact that the logic is described by a one-step

proof system.]

M is a functor [Given a BA-morphism f : A→ B, a derivation of a ≡ a′ in the one-step proof

system over A can be mapped to a derivation of f(a) ≡ f(a′) in the one-step proof system over

B.]

M is finitary and preserves embeddings [Given an injective BA-morphism f : A→ B, a

derivation of f(a) ≡ f(a′) in the one-step proof system over B can be mapped to a derivation of

a ≡ a′ in the one-step proof system over A (proof uses that for a finite BA A an embedding

A→ B has a half-inverse (which follows eg from the fact that complete Boolean algebras are

injective))]
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one-step completeness

Show δ : MPX → PTX is injective. Idea: Find a half-inverse.

How can we go from PTX to MPX? Recall: MPX is genereated by elements in TPX

(and PTX is generated by elements in TX).

So we need TX → TPX, which is provided by applying T to {} : X → PX.

So let G = {∇(T{}(α) | α ∈ TωX}. Note that δ(∇(T{}(α)) = {α}.

We have to show ∀a ∈ MPX. a =
∨
{∇β ∈ G | ∇β ≤ a}.

Case 1: a = ∇β, β ∈ TωPX. Uses (∇3): ∇(T
∨

)(Φ) �
∨
{∇α | α∈Φ}

Case 2: a = ¬∇β. Uses (∇4): From ⊢ ⊤ �
∨
φ infer ⊢ ⊤ �

∨
{∇α | α ∈ Tφ}

Case 3: a =
∧
βi. Uses (∇2):

∧
{∇α | α ∈ A} �

∨
{∇(T

∧
)(Φ) | Φ ∈ SRD(A)}
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conclusion

Given a category X and a functor T : X → X , what can we say about logics
for T -coalgebras? [in the talk: X = Set.]

What is the propositional ‘base logic’? Choose a category A of algebras with
appropriate P : X → A [in the talk: A = BA, P powerset.]

Extend the base logic by modal operators and axioms: choose a functor
L : BA→ BA and semantics δ : LP → PT [δ inuduces map Coalg(T)→ Alg(L).]

One of the strength of this approach is that it is parametric in the base
categories. For example, we want to look at (future work):

A could be distributive lattices, complete atomic Boolean algebras

X could be posets
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