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Background/Motivation

I Formal topology includes a constructive theory of domains, in the
sense that the formal space Pt(X ) of a Scott (or unary) formal
topology X is a Scott domain when ordered by inclusion, and every
Scott domain arises in this way (G. Sambin, 1987).

I In fact, the formal space Pt(X ) of X can be embedded in a Scott
domain D = (Pt(XS),⊆), where XS is the Scott compactification
of X (so XS is Scott) (G. Sambin 1987). Hence, the Scott
compactification gives a domain representation of the topological
space Pt(X ), giving a connection between the two approaches of
representing topological spaces (E. Palmgren, 2007).

I This representation comes with an almost automatic lifting of
morphisms: If F : X → Y continuous, then FS =def F : XS → YS is
continuous and the induced continuous function
Pt(FS) : Pt(XS)→ Pt(YS) satisfies Pt(FS) |Pt(X )= Pt(F ) (E.
Palmgren, 2007).
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Background/Motivation

I If we consider the formal reals Pt(R), the space Pt(RS) gives us a
class of generalized reals, and the function lifting result lets us apply
the lifted functions on these generalized reals. However, the
extension Pt(RS) is in some respects not so nice.

I There is another result saying that every stable locally Scott formal
topology X give rise to a continuous dcpo (Pt(X ),⊆), and that
every continuous dcpo arises in this way (S. Negri 2002). There is a
nice extension of the reals in this class of formal topologies, called
the partial reals in (S. Negri, 2002).

I The aim now is to describe a continuous domain representation of
formal topologies as continuous dcpo’s, in such a way that the
formal reals are represented in the partial reals. To make this work
we have to restrict the class of formal topologies.
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Formal Topology

Definition
A Formal Topology (with positivity predicate) is a tuple
X = (X ,≤, /,Pos) where (X ,≤) is a pre-ordered set (the set of
basic opens) and / is a relation between basic opens a ∈ X and
subsets U ⊆ X satisfying

(Ref) If a ∈ U, then a / U,

(Tra) If a / U and U / V , then a / V ,

(Ext) If a ≤ b, then a / {b},
(Loc) If a / U and a / V , then a / U≤ ∩ V≤.

Here U / V just means that u / V for all u ∈ U and
U≤ =def {x ∈ X : (∃u ∈ U)x ≤ u}.

If a / U we say that U covers a, and we call / a cover relation.
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Formal Topology

Furthermore, Pos is a predicate on X satisfying

(Mon) If Pos(a) and a / U, then there is b ∈ U such that Pos(b),

(Pos) For all a ∈ X , a / {a}+,

where U+ =def {x ∈ X : x ∈ U & Pos(x)}.



Formal Topology

Definition
A (formal) point in a formal topology X is a subset α ⊆ X
satisfying

(i) there is a ∈ α,

(ii) a, b ∈ α iff there is c ∈ α such that c ≤ a, b,

(iii) if a ∈ α and a / U, then there is b ∈ U ∩ α,

(iv) if a ∈ α then Pos(a).

The clause (iv) can actually be derived using (iii) and (Pos)
(a / a+ for all a ∈ X ), but we will need it later.



Formal Topology

The collection of points in a formal topology X is denoted Pt(X ),
and the collection extX (U) of points associated with a set U of
basic opens is given by

extX (U) =def {α ∈ Pt(X ) : (∃a ∈ U)a ∈ α}.

The collections extX (U), U ⊆ X , form an ordinary topology on
Pt(X ).

Theorem
If X is a formal topology, then (Pt(X ),⊆) is a directed complete
partial order (dcpo).
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CLSP Formal Topologies

Definition
We say that a pre-order (X ,≤X ) is a consistently complete lower
semi-lattice pre-order (CLSP), if X has a largest element > and if
for every consistent pair a, b ∈ X , i.e. which has a lower bound
c ≤ a and c ≤ b, there is an element a ∧ b ∈ X satisfying

(a) a ∧ b ≤ a, b,

(b) c ≤ a, b implies c ≤ a ∧ b.

Then X = (X ,≤, /,Pos) is called a CLSP formal topology
whenever (X ,≤) is a CLSP.



Scott compactification

Given a formal topology X = (X ,≤, /,Pos) we define a new
structure XS , as follows: First we define a new preorder ≤S on X
by

a ≤S b ⇐⇒def a / b,

then we define a new relation

a /S U ⇐⇒def Pos(a)→ ∃b ∈ U : a ≤S b,

and define XS = (X ,≤S , /S ,Pos). One can show that XS is a
formal topology, and we call it the Scott compactification of X (S.
Negri, 2002).



Scott compactification

If X is a formal topology, such that XS is a CLSP formal topology,
then

I (Pt(XS),⊆) is a Scott domain,

I Pt(X ) ⊆ Pt(XS) and

I the point topology on Pt(XS) is the Scott Topology.

This can then be stated in terms of a (homeomorphic) domain
representation (D,DR , ϕ), with

I domain D = (Pt(XS),⊆),

I representing elements DR = Pt(X ) and

I representation map ϕ = idPt(X ) : DR → Pt(X ).
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Regular Formal Topologies

Given a formal topology X we can define a relation ≺ on X by

a ≺ b ⇐⇒def X / a⊥ ∪ {b},

where a⊥ =def {c ∈ X : c≤ ∩ a≤ / ∅} (the open complement of a).

If a ≺ b we say that a is well covered by b.



Regular Formal Topologies

Definition
A formal topology X is said to be regular if

b / {x ∈ X : x ≺ b},

for all b ∈ X .

Moreover, we will say that ≺ is dense on X if

a ≺ b =⇒ (∃c ∈ X )a ≺ c ≺ b.



Regular Formal Topologies

Given a regular CLSP formal topology X with ≺ dense on X , we
can define a new topology XR as follows: Let

a ≤R b ⇐⇒def a ≤S b,

i.e. a ≤R b iff a / b, and

a /R U ⇐⇒def {c ∈ X : c ≺ a} /S U,

i.e. a /R U ⇐⇒ (∀c ≺ a)(Pos(c)→ (∃b ∈ U)(c / b)).

We set XR = (X ,≤R , /R ,Pos).



Regular Formal Topologies

Proposition

If X is regular, CLSP and ≺ is dense on X , then XR is a formal
topology.

The topology XR is not regular but it (trivially) satisfies

b /R {a ∈ X | a ≺ b}

for all b ∈ X .
Note: the relation ≺ is still defined via the original cover /.



Points of XR

Lemma
The points of XR are precisely those subsets α ⊆ X satisfying

(i) There is a ∈ α,

(ii) a, b ∈ α iff there is c ∈ α such that c ≤R a, b,

(iii) If a ∈ α, then there is c ∈ α with c ≺ a,

(iv) Pos(a) for all a ∈ α.

For any a ∈ X with Pos(a) we have

↑a =def {x ∈ X : a ≺ x} ∈ Pt(XR)



Regular Formal Topologies and Continuous Dcpo’s

Theorem
If X is regular, CLSP and ≺ is dense on X , then

(a) Pt(XR) is a continuous dcpo with a base given by elements
↑a with Pos(a),

(b) Pt(X ) ⊆ Pt(XR),

(c) Pt(X ) ∩ extXR
(U) = extX (U).

The way below relation � on Pt(XR) has a simple
characterization:

α� β ⇐⇒ (∃b ∈ β)(α ⊆ ↑b ⊆ β).



Regular Formal Topologies and Continuous Dcpo’s

The point topology on Pt(XR) is precisely the Scott topology, so
we can again state the above result as a domain representation
(D,DR , ϕ), where

I D = Pt(XR),

I DR = Pt(X ) and

I ϕ = idPt(X ) : DR → Pt(X ).

As in the case of the Scott compactification, we get a lifting of
continuous morphism (although not as automatic).



Continuous Morphisms

Definition
A continuous morphism F : X → Y between formal topologies is a
relation F ⊆ X × Y satisfying

(A1) aFb, b /Y V =⇒ a /X F−1V ,

(A2) a /X U, xFb for all x ∈ U =⇒ aFb

(A3) X /X F−1Y ,

(A4) aFb, aFc =⇒ a /X F−1(b≤Y ∩ c≤Y )

Here F−1Z =def {x ∈ X : (∃z ∈ Z )xFz}.



Continuous Morphisms

Each continuous morphism F : X → Y induces a continuous point
function Pt(F ) : Pt(X )→ Pt(Y) defined by

Pt(F )(α) = {b ∈ Y | ∃a ∈ α : aFb}.

A continuous morphism F then satisfies

aFb =⇒ Pt(F )(extX (a)) ⊆ extY(b),

for all a ∈ X , b ∈ Y .



Continuous Morphisms

Moreover, point functions are monotone

α ⊆ β =⇒ Pt(F )(α) ⊆ Pt(F )(β),

and preserve directed suprema

αi (i ∈ I ) directed =⇒ Pt(F )(
⋃
i∈I

αi ) =
⋃
i∈I

Pt(F )(αi ).

So Pt(F ) is Scott continuous between dcpo’s
(Pt(X ),⊆)→ (Pt(Y),⊆).



Lifting Continuous Morphisms

Every continuous morphism F : X → Y between regular CLSP
formal topologies, with dense well covered relations, induces a new
relation FR ⊆ X × Y defined by

aFRb ⇐⇒def {x ∈ X : x ≺ a}+ ⊆ F−1{y ∈ Y : y ≺ b}.

Theorem
The relation FR is a continuous morphism between XR and YR ,
and hence Pt(FR) : Pt(XR)→ Pt(YR) is Scott continuous.
Moreover, if α ∈ Pt(X ) ⊆ Pt(XR) then

Pt(FR)(α) = Pt(F )(α).



Lifting Continuous Morphisms

Every continuous morphism F : X → Y between regular CLSP
formal topologies, with dense well covered relations, induces a new
relation FR ⊆ X × Y defined by

aFRb ⇐⇒def {x ∈ X : x ≺ a}+ ⊆ F−1{y ∈ Y : y ≺ b}.

Theorem
The relation FR is a continuous morphism between XR and YR ,
and hence Pt(FR) : Pt(XR)→ Pt(YR) is Scott continuous.
Moreover, if α ∈ Pt(X ) ⊆ Pt(XR) then

Pt(FR)(α) = Pt(F )(α).



Formal Reals R

The basic opens of R are all pairs

(p, q) ∈ (Q ∪ {−∞})× (Q ∪ {+∞}),

where p < q. The pre-order is given by inclusion (as intervals), i.e.

(p, q) ≤ (r , s)⇐⇒def r ≤ p < q ≤ s.

Then R is a CLSP formal topology with top element (−∞,+∞)
and ∧ given by interval intersection

(p, q) ∧ (r , s) =def (min(p, r),max(q, s)).



Formal Reals R

The cover / of R is generated by

(G1) (p, q) / {(p′, q′) : p < p′ < q′ < q}, all (p, q),

(G2) (p, q) / {(p, s), (r , q)}, all (p, q) and p ≤ r < s ≤ q.

The positivity predicate Pos is trivial since we only consider (p, q)
with p < q.

The space Pt(R) is homeomorphic to the ordinary real numbers
(S. Negri, 1996).



Formal Reals R

The well covered relation ≺ on basic opens is given by

(p, q) ≺ (r , s)⇐⇒ (r < p ∨ r = −∞) & (q < s ∨ s = +∞).

Hence, R is a regular CLSP formal topology and ≺ is dense.

Applying the previous results we get an extension Pt(RR) ⊇ Pt(R)
which is a continuous dcpo when ordered by inclusion.

What are the points Pt(RR) of RR?



The dcpo Pt(RR)

One can show that Pt(RR) is (essentially) the structure called the
partial reals in (S. Negri, 2002). These are the points of the formal
topology Rp you get by removing (G2) from the generation of the
cover of R.

Another description is given by the generalized reals in (F.
Richman, 1998). Richman’s generalized reals are given as pairs,
(L,U), of disjoint open subsets, L,U ⊆ Q satisfying
p < q ∈ L =⇒ p ∈ L and p > q ∈ U =⇒ p ∈ U. These are
ordered by inclusion:

(L,U) ≤ (L′,U ′)⇐⇒def L ⊆ L′ & U ′ ⊆ U.

There is a bijective correspondence between such cuts and elements
of Pt(RR). The above ordering of cuts induces a partial order on
Pt(RR) that coincides with usual partial order of formal reals.
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The dcpo Pt(RR)

Some examples of points:

−∞ =def {(−∞, q) : q ∈ Q} and +∞ =def {(p,+∞) : p ∈ Q}.

If we for every α ≤ β ∈ Pt(R) define

I [α, β] =def {(p, q) : (p,+∞) ∈ α & (−∞, q) ∈ β},

then I [α, β] ∈ Pt(RR).

Points I [p, q] with p < q ∈ Q ∪ {−∞,+∞} make up the base of
Pt(RR).

Distances between points and sets in a metric space (F. Richman,
1998).
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Continuous Functions on Pt(R)

We know that every continuous morphism F : R → R lift to a
Scott continuous function Pt(FR) : Pt(RR)→ Pt(RR) satisfying
Pt(FR)(α) = Pt(F )(α) for all α ∈ Pt(R).

Now, every continuous function f : R→ R (in the sense of Bishop
(Bishop, Bridges, 1985)) can be represented by a continuous
morphism Af : R → R (Palmgren, 2004). Hence we can lift every
such function to the dcpo Pt(RR) and apply it to nonstandard
elements.

Theorem
If f : R→ R is continuous and a ≤ b ∈ R, then i = infx∈[a,b] f (x)
and s = supx∈[a,b] f (x) exist, and

fR(I [a, b]) = I [i , s] .
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Arithmetic in Pt(RR)

Using this one can show that arithmetic on Pt(RR) coincides with
interval arithmetic on interval points: for a ≤ b, c ≤ d ∈ R, we
have

I [a, b] +R I [c , d ] = I [a + c , b + d ]

and

I [a, b]×R I [c , d ] = I [min(ac, ad , bc, bd),max(ac, ad , bc, bd)].



Domain Theoretic Derivative

In (A. Edalat & A. Lieutier, 2001) the authors introduced an
operation D on functions f : IR→ IR, where IR consists of all
closed real intervals together with R ordered under reverse
inclusion, satisfying

• D(f ) continuous for every continuous f : IR→ IR,

• D(If ) = I( df
dx ), for all C1 functions f : R→ R.

Here I(f ) is the lifting of f given by the direct image under f .



Domain Theoretic Derivative

In our setting (i.e. replacing IR by Pt(RR)) we can show that
D(fR) is well defined when f : R→ R is differentiable (again in the
sense of Bishop) and

D(fR) =

(
df

dx

)
R

.



Thank You!
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