A Continuous Dcpo Representation of Regular Formal Topologies

Anton Hedin Uppsala University, Department of Mathematics

> Domains IX Brighton, 22 - 24 September 2008

Formal topology includes a constructive theory of domains, in the sense that the formal space Pt(X) of a Scott (or unary) formal topology X is a Scott domain when ordered by inclusion, and every Scott domain arises in this way (G. Sambin, 1987).

- Formal topology includes a constructive theory of domains, in the sense that the formal space Pt(X) of a Scott (or unary) formal topology X is a Scott domain when ordered by inclusion, and every Scott domain arises in this way (G. Sambin, 1987).
- In fact, the formal space Pt(X) of X can be embedded in a Scott domain D = (Pt(X_S), ⊆), where X_S is the Scott compactification of X (so X_S is Scott) (G. Sambin 1987). Hence, the Scott compactification gives a domain representation of the topological space Pt(X), giving a connection between the two approaches of representing topological spaces (E. Palmgren, 2007).

- Formal topology includes a constructive theory of domains, in the sense that the formal space Pt(X) of a Scott (or unary) formal topology X is a Scott domain when ordered by inclusion, and every Scott domain arises in this way (G. Sambin, 1987).
- ▶ In fact, the formal space $Pt(\mathcal{X})$ of \mathcal{X} can be embedded in a Scott domain $D = (Pt(\mathcal{X}_S), \subseteq)$, where \mathcal{X}_S is the Scott compactification of \mathcal{X} (so \mathcal{X}_S is Scott) (G. Sambin 1987). Hence, the Scott compactification gives a domain representation of the topological space $Pt(\mathcal{X})$, giving a connection between the two approaches of representing topological spaces (E. Palmgren, 2007).
- ► This representation comes with an almost automatic lifting of morphisms: If F : X → Y continuous, then F_S =_{def} F : X_S → Y_S is continuous and the induced continuous function Pt(F_S) : Pt(X_S) → Pt(Y_S) satisfies Pt(F_S) |_{Pt(X)} = Pt(F) (E. Palmgren, 2007).

If we consider the formal reals Pt(R), the space Pt(R_S) gives us a class of generalized reals, and the function lifting result lets us apply the lifted functions on these generalized reals. However, the extension Pt(R_S) is in some respects not so nice.

- If we consider the formal reals Pt(R), the space Pt(R_S) gives us a class of generalized reals, and the function lifting result lets us apply the lifted functions on these generalized reals. However, the extension Pt(R_S) is in some respects not so nice.
- There is another result saying that every stable locally Scott formal topology X give rise to a continuous dcpo (Pt(X), ⊆), and that every continuous dcpo arises in this way (S. Negri 2002). There is a nice extension of the reals in this class of formal topologies, called the partial reals in (S. Negri, 2002).

- If we consider the formal reals Pt(R), the space Pt(R_S) gives us a class of generalized reals, and the function lifting result lets us apply the lifted functions on these generalized reals. However, the extension Pt(R_S) is in some respects not so nice.
- There is another result saying that every stable locally Scott formal topology X give rise to a continuous dcpo (Pt(X), ⊆), and that every continuous dcpo arises in this way (S. Negri 2002). There is a nice extension of the reals in this class of formal topologies, called the partial reals in (S. Negri, 2002).
- The aim now is to describe a continuous domain representation of formal topologies as continuous dcpo's, in such a way that the formal reals are represented in the partial reals. To make this work we have to restrict the class of formal topologies.

Definition

A Formal Topology (with positivity predicate) is a tuple $\mathcal{X} = (X, \leq, \triangleleft, \mathsf{Pos})$ where (X, \leq) is a pre-ordered set (the set of *basic opens*) and \triangleleft is a relation between basic opens $a \in X$ and subsets $U \subseteq X$ satisfying

(Ref) If $a \in U$, then $a \triangleleft U$,

(Tra) If $a \triangleleft U$ and $U \triangleleft V$, then $a \triangleleft V$,

(Ext) If $a \leq b$, then $a \triangleleft \{b\}$,

(Loc) If $a \triangleleft U$ and $a \triangleleft V$, then $a \triangleleft U_{\leq} \cap V_{\leq}$.

Definition

A Formal Topology (with positivity predicate) is a tuple $\mathcal{X} = (X, \leq, \triangleleft, \mathsf{Pos})$ where (X, \leq) is a pre-ordered set (the set of *basic opens*) and \triangleleft is a relation between basic opens $a \in X$ and subsets $U \subseteq X$ satisfying

(Ref) If
$$a \in U$$
, then $a \triangleleft U$,

(Tra) If
$$a \triangleleft U$$
 and $U \triangleleft V$, then $a \triangleleft V$,

(Ext) If
$$a \leq b$$
, then $a \triangleleft \{b\}$,

(Loc) If $a \triangleleft U$ and $a \triangleleft V$, then $a \triangleleft U_{\leq} \cap V_{\leq}$.

Here
$$U \triangleleft V$$
 just means that $u \triangleleft V$ for all $u \in U$ and
 $U_{\leq} =_{def} \{x \in X : (\exists u \in U) x \leq u\}.$

If $a \triangleleft U$ we say that U covers a, and we call \triangleleft a cover relation.

Furthermore, Pos is a predicate on X satisfying (Mon) If Pos(a) and $a \triangleleft U$, then there is $b \in U$ such that Pos(b), (Pos) For all $a \in X$, $a \triangleleft \{a\}^+$,

where $U^+ =_{def} \{x \in X : x \in U \& Pos(x)\}.$

Definition

A *(formal) point* in a formal topology \mathcal{X} is a subset $\alpha \subseteq X$ satisfying

(i) there is a ∈ α,
(ii) a, b ∈ α iff there is c ∈ α such that c ≤ a, b,
(iii) if a ∈ α and a ⊲ U, then there is b ∈ U ∩ α,
(iv) if a ∈ α then Pos(a).

The clause (*iv*) can actually be derived using (*iii*) and (Pos) $(a \triangleleft a^+ \text{ for all } a \in X)$, but we will need it later.

The collection of points in a formal topology \mathcal{X} is denoted $Pt(\mathcal{X})$, and the collection $ext_{\mathcal{X}}(U)$ of points associated with a set U of basic opens is given by

$$\operatorname{ext}_{\mathcal{X}}(U) =_{\operatorname{def}} \{ \alpha \in \operatorname{Pt}(\mathcal{X}) : (\exists a \in U) a \in \alpha \}.$$

The collections $ext_{\mathcal{X}}(U)$, $U \subseteq X$, form an ordinary topology on $Pt(\mathcal{X})$.

The collection of points in a formal topology \mathcal{X} is denoted $Pt(\mathcal{X})$, and the collection $ext_{\mathcal{X}}(U)$ of points associated with a set U of basic opens is given by

$$\mathsf{ext}_{\mathcal{X}}(U) =_{\mathsf{def}} \{ \alpha \in \mathsf{Pt}(\mathcal{X}) : (\exists a \in U) a \in \alpha \}.$$

The collections $ext_{\mathcal{X}}(U)$, $U \subseteq X$, form an ordinary topology on $Pt(\mathcal{X})$.

Theorem

If \mathcal{X} is a formal topology, then $(Pt(\mathcal{X}), \subseteq)$ is a directed complete partial order (dcpo).

CLSP Formal Topologies

Definition

We say that a pre-order $(X, \leq_{\mathcal{X}})$ is a consistently complete lower semi-lattice pre-order (CLSP), if X has a largest element \top and if for every consistent pair $a, b \in X$, i.e. which has a lower bound $c \leq a$ and $c \leq b$, there is an element $a \wedge b \in X$ satisfying

(a)
$$a \wedge b \leq a, b$$
,
(b) $c \leq a, b$ implies $c \leq a \wedge b$.

Then $\mathcal{X} = (X, \leq, \triangleleft, \mathsf{Pos})$ is called a CLSP formal topology whenever (X, \leq) is a CLSP.

Scott compactification

Given a formal topology $\mathcal{X} = (X, \leq, \triangleleft, \mathsf{Pos})$ we define a new structure \mathcal{X}_S , as follows: First we define a new preorder \leq_S on X by

$$a \leq_S b \iff_{\mathsf{def}} a \triangleleft b,$$

then we define a new relation

$$a \triangleleft_S U \iff_{\mathsf{def}} \mathsf{Pos}(a) \to \exists b \in U : a \leq_S b,$$

and define $\mathcal{X}_{S} = (X, \leq_{S}, \triangleleft_{S}, \mathsf{Pos})$. One can show that \mathcal{X}_{S} is a formal topology, and we call it the *Scott compactification* of \mathcal{X} (S. Negri, 2002).

Scott compactification

If ${\mathcal X}$ is a formal topology, such that ${\mathcal X}_S$ is a CLSP formal topology, then

- $(Pt(\mathcal{X}_{\mathcal{S}}), \subseteq)$ is a Scott domain,
- $Pt(\mathcal{X}) \subseteq Pt(\mathcal{X}_S)$ and
- the point topology on $Pt(\mathcal{X}_S)$ is the Scott Topology.

Scott compactification

If ${\mathcal X}$ is a formal topology, such that ${\mathcal X}_{\mathcal S}$ is a CLSP formal topology, then

- $(Pt(\mathcal{X}_{\mathcal{S}}), \subseteq)$ is a Scott domain,
- $Pt(\mathcal{X}) \subseteq Pt(\mathcal{X}_S)$ and
- the point topology on $Pt(\mathcal{X}_S)$ is the Scott Topology.

This can then be stated in terms of a (homeomorphic) domain representation (D, D^R, φ) , with

- ▶ domain $D = (Pt(X_S), \subseteq)$,
- representing elements $D^R = Pt(\mathcal{X})$ and
- representation map $\varphi = id_{Pt(\mathcal{X})} : D^R \to Pt(\mathcal{X}).$

Regular Formal Topologies

Given a formal topology $\mathcal X$ we can define a relation \prec on X by

$$a \prec b \Longleftrightarrow_{\mathsf{def}} X \triangleleft a^{\perp} \cup \{b\},$$

where $a^{\perp} =_{def} \{ c \in X : c_{\leq} \cap a_{\leq} \triangleleft \emptyset \}$ (the *open complement* of a).

If $a \prec b$ we say that a is well covered by b.

Regular Formal Topologies

Definition

A formal topology \mathcal{X} is said to be *regular* if

$$b \triangleleft \{x \in X : x \prec b\},\$$

for all $b \in X$.

Moreover, we will say that \prec is *dense* on X if

$$a \prec b \Longrightarrow (\exists c \in X) a \prec c \prec b.$$

Regular Formal Topologies

Given a regular CLSP formal topology \mathcal{X} with \prec dense on X, we can define a new topology \mathcal{X}_R as follows: Let

$$a \leq_R b \Longleftrightarrow_{\mathsf{def}} a \leq_S b,$$

i.e. $a \leq_R b$ iff $a \triangleleft b$, and

$$a \triangleleft_R U \Longleftrightarrow_{\mathsf{def}} \{ c \in X : c \prec a \} \triangleleft_S U,$$

i.e. $a \triangleleft_R U \iff (\forall c \prec a)(\mathsf{Pos}(c) \rightarrow (\exists b \in U)(c \triangleleft b)).$

We set $\mathcal{X}_R = (X, \leq_R, \triangleleft_R, \mathsf{Pos}).$

Proposition

If \mathcal{X} is regular, CLSP and \prec is dense on X, then \mathcal{X}_R is a formal topology.

The topology \mathcal{X}_R is not regular but it (trivially) satisfies

$$b \triangleleft_R \{a \in X \mid a \prec b\}$$

for all $b \in X$. Note: the relation \prec is still defined via the original cover \triangleleft .

Points of \mathcal{X}_R

Lemma

The points of \mathcal{X}_R are precisely those subsets $\alpha \subseteq X$ satisfying

- (i) There is $a \in \alpha$,
- (ii) $a, b \in \alpha$ iff there is $c \in \alpha$ such that $c \leq_R a, b$,
- (iii) If $a \in \alpha$, then there is $c \in \alpha$ with $c \prec a$,

(iv)
$$Pos(a)$$
 for all $a \in \alpha$.

For any $a \in X$ with Pos(a) we have

$$\uparrow a =_{\mathsf{def}} \{x \in X : a \prec x\} \in Pt(\mathcal{X}_R)$$

Regular Formal Topologies and Continuous Dcpo's

Theorem

If \mathcal{X} is regular, CLSP and \prec is dense on X, then

(a) $Pt(X_R)$ is a continuous dcpo with a base given by elements $\uparrow a$ with Pos(a),

(b)
$$Pt(\mathcal{X}) \subseteq Pt(\mathcal{X}_R)$$
,
(c) $Pt(\mathcal{X}) \cap ext_{\mathcal{X}_R}(U) = ext_{\mathcal{X}}(U)$.

The way below relation \ll on $Pt(\mathcal{X}_R)$ has a simple characterization:

$$\alpha \ll \beta \iff (\exists b \in \beta)(\alpha \subseteq \uparrow b \subseteq \beta).$$

Regular Formal Topologies and Continuous Dcpo's

The point topology on $Pt(\mathcal{X}_R)$ is precisely the Scott topology, so we can again state the above result as a domain representation (D, D^R, φ) , where

•
$$D = Pt(\mathcal{X}_R)$$
,

•
$$D^R = Pt(\mathcal{X})$$
 and

•
$$\varphi = id_{Pt(\mathcal{X})} : D^R \to Pt(\mathcal{X}).$$

As in the case of the Scott compactification, we get a lifting of continuous morphism (although not as automatic).

Continuous Morphisms

Definition

A continuous morphism $F : \mathcal{X} \to \mathcal{Y}$ between formal topologies is a relation $F \subseteq X \times Y$ satisfying

(A1)
$$aFb, b \triangleleft_{\mathcal{Y}} V \Longrightarrow a \triangleleft_{\mathcal{X}} F^{-1}V,$$

(A2) $a \triangleleft_{\mathcal{X}} U, xFb$ for all $x \in U \Longrightarrow aFb$
(A3) $X \triangleleft_{\mathcal{X}} F^{-1}Y,$
(A4) $aFb, aFc \Longrightarrow a \triangleleft_{\mathcal{X}} F^{-1}(b_{\leq_{\mathcal{Y}}} \cap c_{\leq_{\mathcal{Y}}})$

Here $F^{-1}Z =_{def} \{x \in X : (\exists z \in Z) x Fz\}.$

Continuous Morphisms

Each continuous morphism $F : \mathcal{X} \to \mathcal{Y}$ induces a continuous point function $Pt(F) : Pt(\mathcal{X}) \to Pt(\mathcal{Y})$ defined by

$$Pt(F)(\alpha) = \{b \in Y \mid \exists a \in \alpha : aFb\}.$$

A continuous morphism F then satisfies

$$aFb \Longrightarrow Pt(F)(\operatorname{ext}_{\mathcal{X}}(a)) \subseteq \operatorname{ext}_{\mathcal{Y}}(b),$$

for all $a \in X$, $b \in Y$.

Continuous Morphisms

Moreover, point functions are monotone

$$\alpha \subseteq \beta \Longrightarrow Pt(F)(\alpha) \subseteq Pt(F)(\beta),$$

and preserve directed suprema

$$\alpha_i \ (i \in I) \text{ directed } \Longrightarrow Pt(F)(\bigcup_{i \in I} \alpha_i) = \bigcup_{i \in I} Pt(F)(\alpha_i).$$

So Pt(F) is Scott continuous between dcpo's $(Pt(\mathcal{X}), \subseteq) \rightarrow (Pt(\mathcal{Y}), \subseteq).$

Lifting Continuous Morphisms

Every continuous morphism $F : \mathcal{X} \to \mathcal{Y}$ between regular CLSP formal topologies, with dense well covered relations, induces a new relation $F_R \subseteq X \times Y$ defined by

$$aF_Rb \iff_{\mathsf{def}} \{x \in X : x \prec a\}^+ \subseteq F^{-1}\{y \in Y : y \prec b\}.$$

Lifting Continuous Morphisms

Every continuous morphism $F : \mathcal{X} \to \mathcal{Y}$ between regular CLSP formal topologies, with dense well covered relations, induces a new relation $F_R \subseteq X \times Y$ defined by

$$aF_Rb \iff_{\mathsf{def}} \{x \in X : x \prec a\}^+ \subseteq F^{-1}\{y \in Y : y \prec b\}.$$

Theorem

The relation F_R is a continuous morphism between \mathcal{X}_R and \mathcal{Y}_R , and hence $Pt(F_R) : Pt(\mathcal{X}_R) \to Pt(\mathcal{Y}_R)$ is Scott continuous. Moreover, if $\alpha \in Pt(\mathcal{X}) \subseteq Pt(\mathcal{X}_R)$ then

 $Pt(F_R)(\alpha) = Pt(F)(\alpha).$

Formal Reals ${\cal R}$

The basic opens of ${\mathcal R}$ are all pairs

$$(p,q) \in (\mathbb{Q} \cup \{-\infty\}) \times (\mathbb{Q} \cup \{+\infty\}),$$

where p < q. The pre-order is given by inclusion (as intervals), i.e.

$$(p,q) \leq (r,s) \Longleftrightarrow_{\mathsf{def}} r \leq p < q \leq s.$$

Then \mathcal{R} is a CLSP formal topology with top element $(-\infty, +\infty)$ and \wedge given by interval intersection

$$(p,q) \wedge (r,s) =_{\mathsf{def}} (\min(p,r), \max(q,s)).$$

Formal Reals ${\cal R}$

The cover \triangleleft of \mathcal{R} is generated by (G1) $(p,q) \triangleleft \{(p',q') : p < p' < q' < q\}$, all (p,q), (G2) $(p,q) \triangleleft \{(p,s), (r,q)\}$, all (p,q) and $p \le r < s \le q$.

The positivity predicate Pos is trivial since we only consider (p, q) with p < q.

The space $Pt(\mathcal{R})$ is homeomorphic to the ordinary real numbers (S. Negri, 1996).

Formal Reals \mathcal{R}

The well covered relation \prec on basic opens is given by

$$(p,q) \prec (r,s) \iff (r$$

Hence, \mathcal{R} is a regular CLSP formal topology and \prec is dense.

Applying the previous results we get an extension $Pt(\mathcal{R}_R) \supseteq Pt(\mathcal{R})$ which is a continuous dcpo when ordered by inclusion.

What are the points $Pt(\mathcal{R}_R)$ of \mathcal{R}_R ?

One can show that $Pt(\mathcal{R}_R)$ is (essentially) the structure called *the partial reals* in (S. Negri, 2002). These are the points of the formal topology \mathcal{R}_p you get by removing (G2) from the generation of the cover of \mathcal{R} .

One can show that $Pt(\mathcal{R}_R)$ is (essentially) the structure called *the* partial reals in (S. Negri, 2002). These are the points of the formal topology \mathcal{R}_p you get by removing (G2) from the generation of the cover of \mathcal{R} .

Another description is given by the generalized reals in (F. Richman, 1998). Richman's generalized reals are given as pairs, (L, U), of disjoint open subsets, $L, U \subseteq \mathbb{Q}$ satisfying $p < q \in L \implies p \in L$ and $p > q \in U \implies p \in U$. These are ordered by inclusion:

$$(L, U) \leq (L', U') \iff_{\mathsf{def}} L \subseteq L' \And U' \subseteq U.$$

One can show that $Pt(\mathcal{R}_R)$ is (essentially) the structure called *the partial reals* in (S. Negri, 2002). These are the points of the formal topology \mathcal{R}_p you get by removing (G2) from the generation of the cover of \mathcal{R} .

Another description is given by the generalized reals in (F. Richman, 1998). Richman's generalized reals are given as pairs, (L, U), of disjoint open subsets, $L, U \subseteq \mathbb{Q}$ satisfying $p < q \in L \implies p \in L$ and $p > q \in U \implies p \in U$. These are ordered by inclusion:

$$(L, U) \leq (L', U') \iff_{\mathsf{def}} L \subseteq L' \And U' \subseteq U.$$

There is a bijective correspondence between such cuts and elements of $Pt(\mathcal{R}_R)$. The above ordering of cuts induces a partial order on $Pt(\mathcal{R}_R)$ that coincides with usual partial order of formal reals.

Some examples of points:

$$-\infty =_{\mathsf{def}} \{(-\infty, q) : q \in \mathbb{Q}\} \text{ and } +\infty =_{\mathsf{def}} \{(p, +\infty) : p \in \mathbb{Q}\}.$$

Some examples of points:

 $-\infty =_{\mathsf{def}} \{(-\infty, q) : q \in \mathbb{Q}\} \text{ and } + \infty =_{\mathsf{def}} \{(p, +\infty) : p \in \mathbb{Q}\}.$

If we for every $\alpha \leq \beta \in Pt(\mathcal{R})$ define

$$I[\alpha,\beta] =_{\mathsf{def}} \{(p,q) : (p,+\infty) \in \alpha \And (-\infty,q) \in \beta\},\$$

then $I[\alpha,\beta] \in Pt(\mathcal{R}_R)$.

Points I[p, q] with $p < q \in \mathbb{Q} \cup \{-\infty, +\infty\}$ make up the base of $Pt(\mathcal{R}_R)$.

Some examples of points:

 $-\infty =_{\mathsf{def}} \{(-\infty, q) : q \in \mathbb{Q}\} \text{ and } + \infty =_{\mathsf{def}} \{(p, +\infty) : p \in \mathbb{Q}\}.$

If we for every $\alpha \leq \beta \in Pt(\mathcal{R})$ define

$$I[\alpha,\beta] =_{\mathsf{def}} \{(p,q) : (p,+\infty) \in \alpha \And (-\infty,q) \in \beta\},\$$

then $I[\alpha,\beta] \in Pt(\mathcal{R}_R)$.

Points I[p, q] with $p < q \in \mathbb{Q} \cup \{-\infty, +\infty\}$ make up the base of $Pt(\mathcal{R}_R)$.

Distances between points and sets in a metric space (F. Richman, 1998).

Continuous Functions on $Pt(\mathcal{R})$

We know that every continuous morphism $F : \mathcal{R} \to \mathcal{R}$ lift to a Scott continuous function $Pt(F_R) : Pt(\mathcal{R}_R) \to Pt(\mathcal{R}_R)$ satisfying $Pt(F_R)(\alpha) = Pt(F)(\alpha)$ for all $\alpha \in Pt(\mathcal{R})$.

Continuous Functions on $Pt(\mathcal{R})$

We know that every continuous morphism $F : \mathcal{R} \to \mathcal{R}$ lift to a Scott continuous function $Pt(F_R) : Pt(\mathcal{R}_R) \to Pt(\mathcal{R}_R)$ satisfying $Pt(F_R)(\alpha) = Pt(F)(\alpha)$ for all $\alpha \in Pt(\mathcal{R})$.

Now, every continuous function $f : \mathbb{R} \to \mathbb{R}$ (in the sense of Bishop (Bishop, Bridges, 1985)) can be represented by a continuous morphism $A_f : \mathcal{R} \to \mathcal{R}$ (Palmgren, 2004). Hence we can lift every such function to the dcpo $Pt(\mathcal{R}_R)$ and apply it to nonstandard elements.

Continuous Functions on $Pt(\mathcal{R})$

We know that every continuous morphism $F : \mathcal{R} \to \mathcal{R}$ lift to a Scott continuous function $Pt(F_R) : Pt(\mathcal{R}_R) \to Pt(\mathcal{R}_R)$ satisfying $Pt(F_R)(\alpha) = Pt(F)(\alpha)$ for all $\alpha \in Pt(\mathcal{R})$.

Now, every continuous function $f : \mathbb{R} \to \mathbb{R}$ (in the sense of Bishop (Bishop, Bridges, 1985)) can be represented by a continuous morphism $A_f : \mathcal{R} \to \mathcal{R}$ (Palmgren, 2004). Hence we can lift every such function to the dcpo $Pt(\mathcal{R}_R)$ and apply it to nonstandard elements.

Theorem

If $f : \mathbb{R} \to \mathbb{R}$ is continuous and $a \le b \in \mathbb{R}$, then $i = \inf_{x \in [a,b]} f(x)$ and $s = \sup_{x \in [a,b]} f(x)$ exist, and

 $f_R(I[a,b]) = I[i,s].$

Using this one can show that arithmetic on $Pt(\mathcal{R}_R)$ coincides with interval arithmetic on interval points: for $a \leq b, c \leq d \in \mathbb{R}$, we have

$$I[a, b] +_R I[c, d] = I[a + c, b + d]$$

and

$$I[a,b] \times_R I[c,d] = I[\min(ac,ad,bc,bd),\max(ac,ad,bc,bd)].$$

In (A. Edalat & A. Lieutier, 2001) the authors introduced an operation D on functions $f : \mathbb{IR} \to \mathbb{IR}$, where \mathbb{IR} consists of all closed real intervals together with \mathbb{R} ordered under reverse inclusion, satisfying

- D(f) continuous for every continuous $f : \mathbb{IR} \to \mathbb{IR}$,
- $D(\mathbf{I}f) = \mathbf{I}(\frac{df}{dx})$, for all \mathcal{C}^1 functions $f : \mathbb{R} \to \mathbb{R}$.

Here I(f) is the lifting of f given by the direct image under f.

In our setting (i.e. replacing $\mathbb{I}\mathbb{R}$ by $Pt(\mathcal{R}_R)$) we can show that $D(f_R)$ is well defined when $f : \mathbb{R} \to \mathbb{R}$ is differentiable (again in the sense of Bishop) and

$$D(f_R) = \left(\frac{df}{dx}\right)_R.$$

Thank You!

References

- E. Bishop, D. Bridges, Constructive analysis, Grundlehren der Mathematischen Wissenschaften, 279, Springer-Verlag, Berlin, 1985.
- Blanck J. Blanck, Domain representations of topological spaces, Theoretical Computer Science 247(2000), 229255.
- A. Edalat, A. Lieutier, Domain theory and differential calculus (functions of one variable), Math. Structures Comput. Sci. 14 (2004), no. 6, 771–802.
- P. T. Johnstone, Stone spaces, Cambridge Studies in Advanced Mathematics, 3. Cambridge University Press, Cambridge, 1982.
- S. Negri, D. Soravia, *The continuum as a formal space*, Arch. Math. Logic 38 (1999), no. 7, 423–447.

References (cont.)

- S. Negri, *Continuous domains as formal spaces*, Math. Structures Comput. Sci. 12 (2002), no. 1, 19–52.
- E. Palmgren, Continuity on the real line and in formal spaces, From sets and types to topology and analysis, 165–175, Oxford Logic Guides, 48, Oxford Univ. Press, Oxford, 2005.
- E. Palmgren, A note on domain representability and formal topology, Revised version of U.U.D.M. Report 2007:28, 2007.
- F. Richman, *Generalized real numbers in constructive mathematics*, Indag. Math. (N.S.) 9 (1998), no. 4, 595–606.
- G. Sambin, *Intuitionistic formal spaces*, Mathematical logic and its applications (Druzhba, 1986), 187–204, Plenum, New York, 1987.