Similarity, Topology, and Uniformity

Reinhold Heckmann

AbsInt Angewandte Informatik GmbH

Distance vs. Similarity

- If x moves towards y,
 - the distance between x and y gets smaller
 - the similarity of x and y gets larger
- Similarity is dual to distance:

 $\begin{array}{l|l} \delta(x,z) \leq \delta(x,y) + \delta(y,z) & \sigma(x,y) * \sigma(y,z) \leq \sigma(x,z) \\ \delta(x,x') < r & \sigma(x,x') > r \\ \delta(x,x') \in U \ \text{co-Scott open} & \sigma(x,x') \in U \ \text{Scott open} \end{array}$

 ... but these are essentially two views of the same thing.

Similarity Preferred

Here, I prefer the similarity view

(Scott better than co-Scott).

Generalized Similarity Systems

- (X, S, σ) with
 - X set of points
 - S topological space (T_0)
 - $\sigma: X \times X \rightarrow S$ similarity function
- No axioms for the beginning
- Similarity system:

S is restricted to be a continuous lattice with its Scott topology

Induced Neighborhood Spaces

- $\sigma: X \times X \rightarrow S$ similarity function
- Right "pre-open" ball: $B^R(x, u) = \{x' \in X \mid \sigma(x, x') \in u\}$ for $x \in X$ and u open in S.
- $A \subseteq X$ is right neighborhood of $x \in X$ if there is *u* open in *S* such that $x \in B^{\mathbb{R}}(x, u) \subseteq A$
- Right neighborhood space $N^{R}(X, S, \sigma)$
- Analogously:

Left "pre-open" ball: $B^{L}(x,u) = \{x' \in X \mid \sigma(x',x) \in u\}$ Left neighborhood space $N^{L}(X,S,\sigma)$

Open Balls and Triangle Inequality

- $A \subseteq X$ is right open
 - if A is right neighborhood of all its elements.
- Are the right "pre-open" balls right open?
- In (quasi/partial) metric spaces, this is derived from the triangle inequality.
- How much can this be generalized?
- Quite far: The "addition" in the triangle inequality need not be commutative, associative, ..., and can be parameterized on the "mid point".

Local and Global Transitivity

- (X, S, σ) is locally transitive if there is a family $(*_y)_{y \in X}$ of functions $*_y : S \times S \to S$ continuous in each argument separately such that
 - $\sigma(x,y) *_y \sigma(y,z) \leq \sigma(x,z)$
 - $\sigma(x,y) *_y \sigma(y,y) = \sigma(x,y)$
 - $\sigma(y,y) *_y \sigma(y,z) = \sigma(y,z)$
- (X, S, σ) is globally transitive if it is locally transitive in a way such that all the operations $*_y$ for $y \in X$ are identical.

Consequences of Local Transitivity

- All left/right pre-open balls are left/right open.
- Hence $N^{L}X$ and $N^{R}X$ are topological spaces $(T^{L}X \text{ and } T^{R}X)$.
- $\sigma_{\chi}: T^{L}\chi \times T^{R}\chi \to S_{\chi}$ is separately continuous.
- If all $*_y : S_X \times S_X \to S_X$ are jointly continuous, then so is σ_X .
- Remark: If S_X is a continuous lattice, separate continuity and joint continuity of *_y are the same.

Comparison with Metric Notions

- GITr1: $\sigma(x, y) * \sigma(y, z) \le \sigma(x, z)$ GITr2: $\sigma(x, x) * \sigma(x, y) = \sigma(x, y) = \sigma(x, y) * \sigma(y, y)$
- Special case $(S, *, \sigma) = (\mathbb{R}^{+op}, +, \delta)$: GITr1: $\delta(x, z) \leq_{\mathbb{R}} \delta(x, y) + \delta(y, z)$ GITr2: $\delta(x, x) + \delta(x, y) = \delta(x, y) \Leftrightarrow \delta(x, x) = 0$ Pseudo quasi metric
- Special case $(S, *, \sigma) = (\mathbb{R}^{+op}, \wedge, \delta)$: GITr1: $\delta(x, z) \leq_{\mathbb{R}} \delta(x, y) \vee_{\mathbb{R}} \delta(y, z)$ GITr2: $\delta(x, x) \vee_{\mathbb{R}} \delta(x, y) = \delta(x, y) \Leftrightarrow \delta(x, x) \leq_{\mathbb{R}} \delta(x, y)$ "Pseudo partial ultrametric"

On Partial Metrics

- Partial metrics in the standard sense with $\delta(x,z) \leq_{\mathbb{R}} \delta(x,y) + \delta(y,z) - \delta(y,y)$ are locally transitive with $a *_y b = (a+b) - \delta(y,y)$.
- Yet a standard example for partial metrics can be considered as

a globally transitive similarity system:

- X = set of finite and infinite strings
- $(S,*) = (\mathbb{N} \cup \{\infty\}, \wedge)$

 $\sigma(x,y)$ = length of longest common prefix of x and y

The Morphisms

- One could fix some *S* and consider functions $f: (X, S, \sigma_X) \to (Y, S, \sigma_Y)$ such that $\sigma_X(x, x') \leq \sigma_Y(fx, fx')$
- Yet every X should have its own S_X
- Idea: Take $f: (X, S_X, \sigma_X) \to (Y, S_Y, \sigma_Y)$ such that there is continuous $\varphi: S_X \to S_Y$ with $\varphi(\sigma_X(x, x')) \leq \sigma_Y(fx, fx')$
- Yet this alone is too weak;

 $\varphi = (a \mapsto \bot)$ would make all functions to morphisms in case of a continuous lattice S_Y

Globally and Locally Continuous

- Consider (X, S_X, σ_X) , (Y, S_Y, σ_Y) , and $f: X \to Y$.
- *f* is globally continuous (GC) if there is a continuous $\varphi : S_X \to S_Y$ such that $\varphi(\sigma_X(x,x')) \leq \sigma_Y(fx,fx')$ and $\varphi(\sigma_X(x,x)) = \sigma_Y(fx,fx)$.
- *f* is right locally continuous (RLC) if for every $x \in X$ there is a continuous $\varphi_x^R : S_X \to S_Y$ such that $\varphi_x^R(\sigma_X(x,x')) \leq \sigma_Y(fx, fx')$ and $\varphi_x^R(\sigma_X(x,x)) = \sigma_Y(fx, fx)$.
- *f* is left locally continuous (LLC) if for every $x \in X$ there is a continuous $\varphi_x^L : S_X \to S_Y$ such that $\varphi_x^L(\sigma_X(x',x)) \leq \sigma_Y(fx',fx)$ and $\varphi_x^L(\sigma_X(x,x)) = \sigma_Y(fx,fx)$.
- *f* is locally continuous (LC) if it is RLC and LLC.

Characterization of Local Continuity

- For generalized similarity spaces X and Y:
 - $f: \mathcal{X} \to \mathcal{Y} \ \mathsf{RLC} \Rightarrow f: \mathbb{N}^{\mathsf{R}}\mathcal{X} \to \mathbb{N}^{\mathsf{R}}\mathcal{Y} \ \text{continuous}$
 - $f: \mathcal{X} \to \mathcal{Y} \text{ LLC } \Rightarrow f: \mathbb{N}^{L}\mathcal{X} \to \mathbb{N}^{L}\mathcal{Y} \text{ continuous}$
 - $f: \mathcal{X} \to \mathcal{Y} \text{ LC } \Rightarrow f \text{ continuous w.r.t. } \mathbb{N}^{\mathbb{R}} \text{ and } \mathbb{N}^{\mathbb{L}}$

For similarity spaces X and Y

 (i.e. S_X and S_Y are continuous lattices),
 these implications are equivalences.

Categorical Equivalences with LC Functions¹

- For every bitopological space (X, τ^{L}, τ^{R}) , there is a globally transitive similarity space Xsuch that $T^{L}X = (X, \tau^{L})$ and $T^{R}X = (X, \tau^{R})$.
- If $\tau^{L} = \tau^{R}$, χ can be chosen to be symmetric i.e. $\sigma_{\chi}(x_{1}, x_{2}) = \sigma_{\chi}(x_{2}, x_{1})$.
- Locally transitive similarity spaces + LC functions ≅ globally transitive similarity spaces + LC functions ≅ bitopological spaces + pairwise continuous functions
- Symmetric loc./glob. trans. sim. spaces + LC fu. topological spaces + continuous functions

Characterization of Global Continuity

- For generalized similarity spaces χ and γ : $f: \mathcal{X} \to \mathcal{Y} \text{ GC} \quad (\text{i.e. } \exists \varphi: S_{\mathcal{X}} \to S_{\mathcal{Y}} \text{ such that } \dots) \Rightarrow$ f is uniformly continuous (UC) in the following sense: for every x in Xand open v of S_{γ} containing $\sigma_{\gamma}(fx, fx)$, there is an open u of S_{χ} containing $\sigma_{\chi}(x,x)$ such that $\sigma_{\chi}(x_1, x_2) \in u \Rightarrow \sigma_{\gamma}(fx_1, fx_2) \in v$. (For metric spaces, this is equivalent to the usual UC.)
- For similarity spaces X and Y

 (i.e. S_X and S_Y are continuous lattices),
 GC is equivalent to UC.

Categorical Equivalences with GC Functions¹⁶

- Similarity spaces + GC functions \cong sets X with topology on X^2 + functions f such that f^2 is continuous on the diagonal
- Globally transitive similarity spaces
 with a constant value for σ(x, x)
 + GC functions ≅
 quasi-uniform spaces + uniformly continuous functions
- Symmetric ... + GC functions ≅
 uniform spaces + uniformly continuous functions
- ... with ω -continuous $S_{\chi} \cong \ldots$ with countable basis

Common Proof Pattern

 To prove these equivalences, one must construct a continuous φ such that

 $\varphi(\sigma_X(x,x')) \le \sigma_Y(fx,fx')$ $\varphi(\sigma_X(x,x)) = \sigma_Y(fx,fx)$

or a continuous * such that $\sigma(x, y) * \sigma(y, z) \le \sigma(x, z)$ $\sigma(x, x) * \sigma(x, y) = \sigma(x, y) = \sigma(x, y) * \sigma(y, y)$

- Common pattern: general inequality + equality for specific arguments
- Use generalized injectivity of continuous lattices.

Generalized Injectivity of Cont. Lattices

- (L, OL) continuous lattice with Scott top.
- Define $Fy = \bigvee \{ \bigwedge f^+(g^-U) \mid U \in OY, U \ni y \}$
- $F: Y \to L$ is continuous and satisfies $F \circ g \leq f$.
- If a specific point x of X has the property that for all $V \in OL$ containing fxthere is $U \in OY$ containing gx such that $g^-U \subseteq f^-V$, then F(gx) = fx holds for this x.

heckmann@absint.com

http://rw4.cs.uni-sb.de/~heckmann