
Introduction
A Language for Cooperative Threads

An Elementary Fully Abstract Denotational Semantics
An Algebraic View of the Semantics

Conclusions

A Model of Cooperative Threads

Martín Abadi Gordon Plotkin

Microsoft Research, Silicon Valley
LFCS, University of Edinburgh

Domains IX, University of Sussex 2008

Martín Abadi, Gordon Plotkin A Model of Cooperative Threads

Introduction
A Language for Cooperative Threads

An Elementary Fully Abstract Denotational Semantics
An Algebraic View of the Semantics

Conclusions

Outline

1 Introduction

2 A Language for Cooperative Threads

3 An Elementary Fully Abstract Denotational Semantics
Denotational Semantics
Adequacy and Full Abstraction

4 An Algebraic View of the Semantics
The Algebraic Theory of Effects
Resumptions Considered Algebraically
Asynchronous Processes Considered Algebraically
Processes Considered Algebraically

5 Conclusions

Martín Abadi, Gordon Plotkin A Model of Cooperative Threads

Introduction
A Language for Cooperative Threads

An Elementary Fully Abstract Denotational Semantics
An Algebraic View of the Semantics

Conclusions

Cooperative Threads and AME

Cooperative Threads run without interruption until they yield
control.

Interest in such threads has increased recently with the
introduction of Automatic Mutual Exclusion (AME) and the
problem of programming multicore systems.

Martín Abadi, Gordon Plotkin A Model of Cooperative Threads

Introduction
A Language for Cooperative Threads

An Elementary Fully Abstract Denotational Semantics
An Algebraic View of the Semantics

Conclusions

What we do

We describe a simple language for cooperative threads and
give it a mathematically elementary fully abstract (may)
semantics of sets of traces, being transition sequences of,
roughly, the form:

u = (σ1, σ
′
1) . . . (σm, σ

′
m)

à la Abrahamson, the authors, Brookes etc, but adapted to
incorporate thread spawning.

Following the algebraic theory of effects, we characterise the
semantics using a suitable inequational theory, thereby
relating it to standard domain-theoretic notions of
resumptions.

Martín Abadi, Gordon Plotkin A Model of Cooperative Threads

Introduction
A Language for Cooperative Threads

An Elementary Fully Abstract Denotational Semantics
An Algebraic View of the Semantics

Conclusions

Syntax

b ∈ BExp = . . .

e ∈ NExp = . . .

C ,D ∈ Com = skip
| x := e (x ∈ Vars)
| C; D
| if b then C else D
| while b do C
| async C
| yield
| block

Martín Abadi, Gordon Plotkin A Model of Cooperative Threads

Introduction
A Language for Cooperative Threads

An Elementary Fully Abstract Denotational Semantics
An Algebraic View of the Semantics

Conclusions

Example

async x := 0;
x := 1;
yield;
if x = 0 then x := 2 else block

This spawns the asynchronous execution of x := 0, executes
x := 1, yields, then resumes but blocks unless the predicate x = 0
holds, then executes x := 2

With respect to safety properties, the conditional blocking amounts
to awaiting that x = 0 holds. So The last line may be paraphrased
as

await x = 0; x := 2

Martín Abadi, Gordon Plotkin A Model of Cooperative Threads

Introduction
A Language for Cooperative Threads

An Elementary Fully Abstract Denotational Semantics
An Algebraic View of the Semantics

Conclusions

Operational Semantics

〈σ,T ,E[x := e]〉 −→a 〈σ[x 7→ σ(e)],T ,E[skip]〉
〈σ,T ,E[skip; C]〉 −→a 〈σ,T ,E[C]〉
〈σ,T ,E[if b then C else D]〉 −→a 〈σ,T ,E[C]〉

(if σ(b) = true)
〈σ,T ,E[while b do C]〉 −→a 〈σ,T ,E[C; while b do C]〉

(if σ(b) = true)
〈σ,T ,E[async C]〉 −→a 〈σ,T .C ,E[skip]〉
〈σ,T ,E[yield]〉 −→a 〈σ,T .E[skip], skip〉
〈σ,T .C .T ′, skip〉 −→c 〈σ,T .T ′,C〉

Martín Abadi, Gordon Plotkin A Model of Cooperative Threads

Introduction
A Language for Cooperative Threads

An Elementary Fully Abstract Denotational Semantics
An Algebraic View of the Semantics

Conclusions

State Space and Evaluation Contexts

State Space

Γ ∈ State = Store × ThreadPool × Com
σ ∈ Store = Vars→ Nat
T ∈ ThreadPool = Com∗

where Vars is finite.

Evaluation Contexts

E = [] | E; C

Martín Abadi, Gordon Plotkin A Model of Cooperative Threads

Introduction
A Language for Cooperative Threads

An Elementary Fully Abstract Denotational Semantics
An Algebraic View of the Semantics

Conclusions

Denotational Semantics
Adequacy and Full Abstraction

Outline

1 Introduction

2 A Language for Cooperative Threads

3 An Elementary Fully Abstract Denotational Semantics
Denotational Semantics
Adequacy and Full Abstraction

4 An Algebraic View of the Semantics
The Algebraic Theory of Effects
Resumptions Considered Algebraically
Asynchronous Processes Considered Algebraically
Processes Considered Algebraically

5 Conclusions

Martín Abadi, Gordon Plotkin A Model of Cooperative Threads

Introduction
A Language for Cooperative Threads

An Elementary Fully Abstract Denotational Semantics
An Algebraic View of the Semantics

Conclusions

Denotational Semantics
Adequacy and Full Abstraction

Transition Sequences

Abrahamson used transition sequences of the form:

u = (σ1, σ
′
1) . . . (σm, σ

′
m)

Perhaps we need hierarchical triples for thread spawning:

v = (σ1, u1, σ
′
1) . . . (σm, um, σ

′
m)

Miraculously, we only need 1 embedding to 1 level, roughly:

v = (σ1, σ
′
1) . . . (σm, u, σ′m)

Precisely, so that prefix is the right partial order, and also to
allow for totality, transition sequences are:

v = (σ1, σ
′
1) . . . (σm, σ

′
m)[(σ,σ′ return)u]

where u = (σ1, σ
′
1) . . . (σn, σ

′
n)[done]

is a pure transition sequence (and m, n ≥ 0).
Martín Abadi, Gordon Plotkin A Model of Cooperative Threads

Introduction
A Language for Cooperative Threads

An Elementary Fully Abstract Denotational Semantics
An Algebraic View of the Semantics

Conclusions

Denotational Semantics
Adequacy and Full Abstraction

Form of Denotational Semantics

Proc, our domain of processes, is I,∅,ω(TSeq) the ω-cpo of all
non-empty, countably-based ideals of transition sequences, i.e., all
nonempty prefix-closed sets of transition sequences. We have:

[[C]] ∈ Proc

Pool, our domain of thread pools, is I,∅,ω(PSeq) the ω-cpo of all
non-empty, countably-based ideals of pure transition sequences,
i.e., the ω-cpo of all non-empty prefix-closed sets of pure transition
sequences. We have:

[[T]] ∈ Pool

Martín Abadi, Gordon Plotkin A Model of Cooperative Threads

Introduction
A Language for Cooperative Threads

An Elementary Fully Abstract Denotational Semantics
An Algebraic View of the Semantics

Conclusions

Denotational Semantics
Adequacy and Full Abstraction

Denotational Semantics of Commands

[[skip]] = ∗

[[C; D]] = [[C]] ◦ [[D]]

[[x := e]] = {(σ,σ[x 7→ n] return) done | σ ∈ Store, σ(e) = n} ↓

[[if b then C else D]] = {(σ, τ)v ∈ [[C]] | σ(b) = true} ↓ ∪
{(σ, τ)v ∈ [[D]] | σ(b) = false} ↓

[[while b do C]] = ∪i[[(while b do C)i]]

[[async C]] = async([[C]]c)

[[yield]] = d(∗)

[[block]] = {ε}

Martín Abadi, Gordon Plotkin A Model of Cooperative Threads

Introduction
A Language for Cooperative Threads

An Elementary Fully Abstract Denotational Semantics
An Algebraic View of the Semantics

Conclusions

Denotational Semantics
Adequacy and Full Abstraction

Sequential Composition of Processes

We give rules for composition, as it is easier to understand that
way:

v(σ,σ′return)u ∈ P (σ′, τ)w ∈ Q
v(σ, τ)(u ./ w) ⊆ P ◦ Q

v ∈ P
v ∈ P ◦ Q

if v does not contain return

It is associative with two-sided unit:

∗ = {(σ,σ return) done | σ ∈ Store} ↓

Martín Abadi, Gordon Plotkin A Model of Cooperative Threads

Introduction
A Language for Cooperative Threads

An Elementary Fully Abstract Denotational Semantics
An Algebraic View of the Semantics

Conclusions

Denotational Semantics
Adequacy and Full Abstraction

Merging transition sequences

The set of merges of a pure transition sequence u and a (pure)
transition sequence w is given by:

u[done]1 ./ w[done]2 = (u ./ w)[done]1∧2

where the merge on the right is the standard merge of sequences
and the done on the right appears only if it appears both times on
the left.

Martín Abadi, Gordon Plotkin A Model of Cooperative Threads

Introduction
A Language for Cooperative Threads

An Elementary Fully Abstract Denotational Semantics
An Algebraic View of the Semantics

Conclusions

Denotational Semantics
Adequacy and Full Abstraction

Delay and Yielding

We define a continuous delay function d : Proc → Proc by:

d(P) = {(σ,σ)v | σ ∈ Store, v ∈ P} ↓

So that:

[[yield]] = d(∗) = {(σ,σ)(σ′, σ′ return) donem} ↓

Martín Abadi, Gordon Plotkin A Model of Cooperative Threads

Introduction
A Language for Cooperative Threads

An Elementary Fully Abstract Denotational Semantics
An Algebraic View of the Semantics

Conclusions

Denotational Semantics
Adequacy and Full Abstraction

Spawning Threads

Recall:

[[async C]] = async([[C]]c)

Where:

−c : Proc→ Pool is the extension to processes of the function
−c : TSeq→ PSeq of the same name from transition
sequences to pure transition sequences which removes the
marker return

async(P) =def {(σ,σ return)u | σ ∈ Store, u ∈ P}

Note: async(Pc) differs from d(P) only in the placement of the
marker return: the former replaces it at the beginning.

Martín Abadi, Gordon Plotkin A Model of Cooperative Threads

Introduction
A Language for Cooperative Threads

An Elementary Fully Abstract Denotational Semantics
An Algebraic View of the Semantics

Conclusions

Denotational Semantics
Adequacy and Full Abstraction

Denotational Semantics of Thread Pools

./: Pool2 → Pool is the extension to thread pools of the binary
function on pure transition sequences of the same name.

Together with I =def {done} ↓ it forms a commutative monoid

The semantics of a thread pool C1, . . . ,Cn is given by:

[[C1, . . . ,Cn]] = [[C1]]c .// [[Cn]]c (n ≥ 0)

Note that [[ε]] = I

Our domain of asynchronous processes AProc is the
sub-ω-cpo of Pool none of whose elements contain done.

We always have [[C]]c ∈ AProc.

Martín Abadi, Gordon Plotkin A Model of Cooperative Threads

Introduction
A Language for Cooperative Threads

An Elementary Fully Abstract Denotational Semantics
An Algebraic View of the Semantics

Conclusions

Denotational Semantics
Adequacy and Full Abstraction

Outline

1 Introduction

2 A Language for Cooperative Threads

3 An Elementary Fully Abstract Denotational Semantics
Denotational Semantics
Adequacy and Full Abstraction

4 An Algebraic View of the Semantics
The Algebraic Theory of Effects
Resumptions Considered Algebraically
Asynchronous Processes Considered Algebraically
Processes Considered Algebraically

5 Conclusions

Martín Abadi, Gordon Plotkin A Model of Cooperative Threads

Introduction
A Language for Cooperative Threads

An Elementary Fully Abstract Denotational Semantics
An Algebraic View of the Semantics

Conclusions

Denotational Semantics
Adequacy and Full Abstraction

Adequacy Theorem for Pure Transition Sequences

Define:
Γ⇒ Γ′ iff Γ −→a

∗ −→cΓ′

and
[[T ,C]] = async([[T]]) ◦ [[C]]

Theorem

The following are equivalent:
1 (σ1, σ

′
1) . . . (σn, σ

′
n)done ∈ [[T1,C1]]c (n > 0)

2 There are Ti ,Ci , (i = 2, n) such that
〈σi ,Ti ,Ci〉 ⇒ 〈σ

′
i ,Ti+1,Ci+1〉, for 1 ≤ i ≤ n − 1

〈σn,Tn,Cn〉 −→a
∗ 〈σ′n, ε, skip〉.

There is an analogous statement for (σ1, σ
′
1) . . . (σn, σ

′
n) ∈ [[T ,C]]c

Martín Abadi, Gordon Plotkin A Model of Cooperative Threads

Introduction
A Language for Cooperative Threads

An Elementary Fully Abstract Denotational Semantics
An Algebraic View of the Semantics

Conclusions

Denotational Semantics
Adequacy and Full Abstraction

Adequacy Theorem for Runs

To account for uninterrupted running, we define, for P ∈ Pool:

runs(P) = {σ1 . . . σn[done] | (σ1, σ2)(σ2, σ3) . . . (σn−1, σn)[done] ∈ P}

These runs are our observables.

Corollary

The following are equivalent:
1 σ1 . . . σndone ∈ runs([[T1,C1]]) (n ≥ 2)

2 There are Ti ,Ci , (i = 2, n − 1) such that:
〈σ1,T1,C1〉 ⇒ . . .⇒ 〈σn−1,Tn−1,Cn−1〉 −→a

∗ 〈σn, ε, skip〉

There is an analogous statement for σ1 . . . σn ∈ runs([[T1,C1]])

Martín Abadi, Gordon Plotkin A Model of Cooperative Threads

Introduction
A Language for Cooperative Threads

An Elementary Fully Abstract Denotational Semantics
An Algebraic View of the Semantics

Conclusions

Denotational Semantics
Adequacy and Full Abstraction

Inequational Full Abstraction

Theorem

The following are equivalent, for any commands C and D:

1 [[C]] ⊆ [[D]]

2 For every context C, runs([[C[C]]]c) ⊆ runs([[C[D]]]c).

Martín Abadi, Gordon Plotkin A Model of Cooperative Threads

Introduction
A Language for Cooperative Threads

An Elementary Fully Abstract Denotational Semantics
An Algebraic View of the Semantics

Conclusions

The Algebraic Theory of Effects
Resumptions Considered Algebraically
Asynchronous Processes Considered Algebraically
Processes Considered Algebraically

Overview

Following Moggi we are interested in a monadic point of view,
here using a continuous monad T(P) over ωCpo to model the
set of computations for elements of P. We seek such a TProc
with:

Proc = TProc(1)

To this end we seek a computationally interesting equational
theory LProc such that TProc is the corresponding free algebra
(better, free model) monad.

This theory will be a variant of the theory for the classical
resumptions monad and so we will also see how the trace
model described above fits in with standard notions.

Martín Abadi, Gordon Plotkin A Model of Cooperative Threads

Introduction
A Language for Cooperative Threads

An Elementary Fully Abstract Denotational Semantics
An Algebraic View of the Semantics

Conclusions

The Algebraic Theory of Effects
Resumptions Considered Algebraically
Asynchronous Processes Considered Algebraically
Processes Considered Algebraically

Outline

1 Introduction

2 A Language for Cooperative Threads

3 An Elementary Fully Abstract Denotational Semantics
Denotational Semantics
Adequacy and Full Abstraction

4 An Algebraic View of the Semantics
The Algebraic Theory of Effects
Resumptions Considered Algebraically
Asynchronous Processes Considered Algebraically
Processes Considered Algebraically

5 Conclusions

Martín Abadi, Gordon Plotkin A Model of Cooperative Threads

Introduction
A Language for Cooperative Threads

An Elementary Fully Abstract Denotational Semantics
An Algebraic View of the Semantics

Conclusions

The Algebraic Theory of Effects
Resumptions Considered Algebraically
Asynchronous Processes Considered Algebraically
Processes Considered Algebraically

Inequational Theories

These are:
Th = (Σ, InEq)

where the operation arities f : n → 1 are given by Σ and InEq is a
set of inequations

t ≤ u

over terms formed from these operation symbols.

One then has the usual notion of Σ-algebra in ωCpo and the free
model—meaning modelling the inequations—monad over ωCpo is
written TTh.

Martín Abadi, Gordon Plotkin A Model of Cooperative Threads

Introduction
A Language for Cooperative Threads

An Elementary Fully Abstract Denotational Semantics
An Algebraic View of the Semantics

Conclusions

The Algebraic Theory of Effects
Resumptions Considered Algebraically
Asynchronous Processes Considered Algebraically
Processes Considered Algebraically

Two Examples

Example Nontermination: the theory LΩ

Ω ≤ x

Here TΩ is the usual lifting monad.

Example Hoare (Lower) Powerdomain: the theory LH

x ≤ x ∪ y y ≤ x ∪ y z ∪ z ≤ z

Here TH is the lower powerdomain monad in ωCpo; TH(P) is the
free ω-semilattice over P (meaning all countable sups) and it
consists of of all countably generated Scott closed sets.

Martín Abadi, Gordon Plotkin A Model of Cooperative Threads

Introduction
A Language for Cooperative Threads

An Elementary Fully Abstract Denotational Semantics
An Algebraic View of the Semantics

Conclusions

The Algebraic Theory of Effects
Resumptions Considered Algebraically
Asynchronous Processes Considered Algebraically
Processes Considered Algebraically

The Side-Effects Monad Considered Algebraically

Monad
TS(P) = (Store × P)Store

Signature

lookup : Nat→ Vars update : 1→ Vars × Nat

The corresponding generics are:

! : Vars→ Nat := : Vars × Nat→ 1

Martín Abadi, Gordon Plotkin A Model of Cooperative Threads

Introduction
A Language for Cooperative Threads

An Elementary Fully Abstract Denotational Semantics
An Algebraic View of the Semantics

Conclusions

The Algebraic Theory of Effects
Resumptions Considered Algebraically
Asynchronous Processes Considered Algebraically
Processes Considered Algebraically

Sample Equations for the Side-Effects Theory SE

updatel,v(updatel′,v′(x)) = updatel′,v′(updatel,v(x)) (if l , l′)

lookupl(. . . updatel,v(x) . . .) = x

which last can be written in a finitary way as:

lookupl((v : val).updatel,v(x)) = x

Martín Abadi, Gordon Plotkin A Model of Cooperative Threads

Introduction
A Language for Cooperative Threads

An Elementary Fully Abstract Denotational Semantics
An Algebraic View of the Semantics

Conclusions

The Algebraic Theory of Effects
Resumptions Considered Algebraically
Asynchronous Processes Considered Algebraically
Processes Considered Algebraically

Countably Infinitary Continuous Algebra

Signature Σ = {f :
−→
I1 , . . . ,

−→
Im −→ O1, . . . ,On}, with

−→
I1 , . . . ,

−→
Im

countably infinite sets, and O1, . . . ,On parameter spaces,
being ω-cpos, giving:

Function symbols fo1,...,on (for oj ∈ Oj), indexed by:

O =def O1 × . . . × On

of arity
I =def (

∏−→
I1) × . . . × (

∏−→
Im)

Infinitary terms
f−→o (〈t−→

i1 ,...,
−→
im
〉−→

i1 ,...,
−→
im

)

Note the indexed arguments.

Inequations InEq consists of inequations t ≤ u between the
(possibly) infinitary terms formed from the function symbols.

Martín Abadi, Gordon Plotkin A Model of Cooperative Threads

Introduction
A Language for Cooperative Threads

An Elementary Fully Abstract Denotational Semantics
An Algebraic View of the Semantics

Conclusions

The Algebraic Theory of Effects
Resumptions Considered Algebraically
Asynchronous Processes Considered Algebraically
Processes Considered Algebraically

Models

Algebras Carriers, being ω-cpos A , equipped with continuous
maps

fA : A I −→ AO

equivalently
fA : O × A I −→ A

Models are such satisfying the inequations.

Free Algebra Monad We obtain TTh giving the free such
model; it is an ωCpo-monad.

Remark There is a useful finitary notation for such infinitary
theories.

Martín Abadi, Gordon Plotkin A Model of Cooperative Threads

Introduction
A Language for Cooperative Threads

An Elementary Fully Abstract Denotational Semantics
An Algebraic View of the Semantics

Conclusions

The Algebraic Theory of Effects
Resumptions Considered Algebraically
Asynchronous Processes Considered Algebraically
Processes Considered Algebraically

Outline

1 Introduction

2 A Language for Cooperative Threads

3 An Elementary Fully Abstract Denotational Semantics
Denotational Semantics
Adequacy and Full Abstraction

4 An Algebraic View of the Semantics
The Algebraic Theory of Effects
Resumptions Considered Algebraically
Asynchronous Processes Considered Algebraically
Processes Considered Algebraically

5 Conclusions

Martín Abadi, Gordon Plotkin A Model of Cooperative Threads

Introduction
A Language for Cooperative Threads

An Elementary Fully Abstract Denotational Semantics
An Algebraic View of the Semantics

Conclusions

The Algebraic Theory of Effects
Resumptions Considered Algebraically
Asynchronous Processes Considered Algebraically
Processes Considered Algebraically

The Theory for Resumptions

We define:

LRes = LH ⊗ ((LS ⊗ LΩ) + Ld)

where:

Ld is the theory of a unary operator, d, with no axioms.

The axioms of L + L ′ are those of L and L ′ (we assume the
operation symbols are disjoint).

The axioms of L ⊗ L ′ are those of L + L ′ together with the
commutativity of the operations of the one over the operations
of the other (again assuming disjointness).

Martín Abadi, Gordon Plotkin A Model of Cooperative Threads

Introduction
A Language for Cooperative Threads

An Elementary Fully Abstract Denotational Semantics
An Algebraic View of the Semantics

Conclusions

The Algebraic Theory of Effects
Resumptions Considered Algebraically
Asynchronous Processes Considered Algebraically
Processes Considered Algebraically

Basic Q-Transition Sequences

Q a poset

Q-transition: (σ,σ′x) where x ∈ Q

basic Q-transition sequence: (σ1, σ1), . . . , (σn, σn)[(σ,σ′x)]

Q-BTrans is the partial order of Q-transition sequences where
u ≤ v holds iff:

either u ≤p v
or else ∃w, x ≤ y. u ≤p w(σ,σ′x) ∧ v = w(σ,σ′y)

Martín Abadi, Gordon Plotkin A Model of Cooperative Threads

Introduction
A Language for Cooperative Threads

An Elementary Fully Abstract Denotational Semantics
An Algebraic View of the Semantics

Conclusions

The Algebraic Theory of Effects
Resumptions Considered Algebraically
Asynchronous Processes Considered Algebraically
Processes Considered Algebraically

Characterisation Theorem for Resumptions

Theorem

1 Viewed as an LRes-model, Iω(Q-BTrans) is TRes(I
↑
ω(Q)).

2 As a semilattice with a zero this is the solution in ωSL of the
‘domain equation’

R � (S × (R⊥ + Id↑ω(Q)))S

equivalently

R � (S × S) × (R⊥ + Id↑ω(Q))

3 Q-BTrans is the solution in Pos of:

T � (S × S) × (T⊥ + Q)

Martín Abadi, Gordon Plotkin A Model of Cooperative Threads

Introduction
A Language for Cooperative Threads

An Elementary Fully Abstract Denotational Semantics
An Algebraic View of the Semantics

Conclusions

The Algebraic Theory of Effects
Resumptions Considered Algebraically
Asynchronous Processes Considered Algebraically
Processes Considered Algebraically

Outline

1 Introduction

2 A Language for Cooperative Threads

3 An Elementary Fully Abstract Denotational Semantics
Denotational Semantics
Adequacy and Full Abstraction

4 An Algebraic View of the Semantics
The Algebraic Theory of Effects
Resumptions Considered Algebraically
Asynchronous Processes Considered Algebraically
Processes Considered Algebraically

5 Conclusions

Martín Abadi, Gordon Plotkin A Model of Cooperative Threads

Introduction
A Language for Cooperative Threads

An Elementary Fully Abstract Denotational Semantics
An Algebraic View of the Semantics

Conclusions

The Algebraic Theory of Effects
Resumptions Considered Algebraically
Asynchronous Processes Considered Algebraically
Processes Considered Algebraically

Asynchronous Processes

LAProc is LRes extended by a new constant halt with the axiom:

d(Ω) ≤ halt

Theorem

1 AProc is the initial LAProc-model, i.e., it is TAProc(0).
2 As a semilattice with a zero this is the solution in ωSL of the

‘domain equation’

R � (S × S) × (R + 1)⊥

Martín Abadi, Gordon Plotkin A Model of Cooperative Threads

Introduction
A Language for Cooperative Threads

An Elementary Fully Abstract Denotational Semantics
An Algebraic View of the Semantics

Conclusions

The Algebraic Theory of Effects
Resumptions Considered Algebraically
Asynchronous Processes Considered Algebraically
Processes Considered Algebraically

Outline

1 Introduction

2 A Language for Cooperative Threads

3 An Elementary Fully Abstract Denotational Semantics
Denotational Semantics
Adequacy and Full Abstraction

4 An Algebraic View of the Semantics
The Algebraic Theory of Effects
Resumptions Considered Algebraically
Asynchronous Processes Considered Algebraically
Processes Considered Algebraically

5 Conclusions

Martín Abadi, Gordon Plotkin A Model of Cooperative Threads

Introduction
A Language for Cooperative Threads

An Elementary Fully Abstract Denotational Semantics
An Algebraic View of the Semantics

Conclusions

The Algebraic Theory of Effects
Resumptions Considered Algebraically
Asynchronous Processes Considered Algebraically
Processes Considered Algebraically

The Theory for Processes

This is:

LProc = LRes + LSpawn

where LSpawn is the theory for spawning whose signature is that for
LRes together with two new operation symbols:

async : 1 −→ AProc

yield_to : 1 −→ AProc

We write
P · t for asyncP(t)

t · P for yield_toP(t)

Martín Abadi, Gordon Plotkin A Model of Cooperative Threads

Introduction
A Language for Cooperative Threads

An Elementary Fully Abstract Denotational Semantics
An Algebraic View of the Semantics

Conclusions

The Algebraic Theory of Effects
Resumptions Considered Algebraically
Asynchronous Processes Considered Algebraically
Processes Considered Algebraically

Proc as a Proc-algebra

For P ∈ AProc and Q ∈ Proc we define:

P ·Proc Q = async(P) ◦ Q
=
⋃
{(σ, τ)u ./ w | u ∈ P, (σ, τ)w ∈ Q} ↓

Q ·Proc P =
⋃
{(σ,σ′)u ./ v | (σ,σ′)u ∈ P, v ∈ Q} ↓

Martín Abadi, Gordon Plotkin A Model of Cooperative Threads

Introduction
A Language for Cooperative Threads

An Elementary Fully Abstract Denotational Semantics
An Algebraic View of the Semantics

Conclusions

The Algebraic Theory of Effects
Resumptions Considered Algebraically
Asynchronous Processes Considered Algebraically
Processes Considered Algebraically

First Group of Equations

These concern commutation with ∪:

(P ∪AProc P′) · x = (P · x) ∪ (P′ · x)

P · (x ∪ y) = P · x ∪ P · y

(x ∪ y) · P = x · P ∪ y · P

x · (P ∪AProc P′) = x · P ∪ x · P′

Martín Abadi, Gordon Plotkin A Model of Cooperative Threads

Introduction
A Language for Cooperative Threads

An Elementary Fully Abstract Denotational Semantics
An Algebraic View of the Semantics

Conclusions

The Algebraic Theory of Effects
Resumptions Considered Algebraically
Asynchronous Processes Considered Algebraically
Processes Considered Algebraically

Equations for async

P · updatel,v(x) = updatel,v(P · x)

P · lookupl(〈xv〉v) = lookupl(〈P · xv〉v)

P · Ω = Ω

P · d(x) = d(P · x) ∪ d(x · P)

P · (P′ · x) = (P ./ P′) · x

P · (x · P′) = (P · x) · P′ ∪ (x · P) · P′

(The last is redundant.)

Martín Abadi, Gordon Plotkin A Model of Cooperative Threads

Introduction
A Language for Cooperative Threads

An Elementary Fully Abstract Denotational Semantics
An Algebraic View of the Semantics

Conclusions

The Algebraic Theory of Effects
Resumptions Considered Algebraically
Asynchronous Processes Considered Algebraically
Processes Considered Algebraically

Equations for yield_to

x · (updateAProc)l,v(P) = updatel,v(x · P)

x · (lookupAProc)l(f) = lookupl(〈x · f(v)〉v)

x · ΩAProc = Ω

x · dAProc(P) = d(x · P) ∪ d(P · x)

x · haltAProc = d(x)

Martín Abadi, Gordon Plotkin A Model of Cooperative Threads

Introduction
A Language for Cooperative Threads

An Elementary Fully Abstract Denotational Semantics
An Algebraic View of the Semantics

Conclusions

The Algebraic Theory of Effects
Resumptions Considered Algebraically
Asynchronous Processes Considered Algebraically
Processes Considered Algebraically

Transition Sequences for Processes

Q-Trans =def (Q × PSeq)-BTrans

Its elements have the form:

(σ1, σ
′
1) . . . (σm, σ

′
m)[(σ,σ′〈x, (σ1, σ

′
1) . . . (σn, σ

′
n)[done]〉)]

Martín Abadi, Gordon Plotkin A Model of Cooperative Threads

Introduction
A Language for Cooperative Threads

An Elementary Fully Abstract Denotational Semantics
An Algebraic View of the Semantics

Conclusions

The Algebraic Theory of Effects
Resumptions Considered Algebraically
Asynchronous Processes Considered Algebraically
Processes Considered Algebraically

Characterisation Theorems for Processes

Theorem

1 Viewed as an LProc-model, Iω(Q-Trans) is the free model over
I
↑
ω(Q).

2 So as a Res-algebra:

TProc(I↑ω(Q)) � TRes(Pool × I↑ω(Q))

3 There is an isomorphism θ :Q-Trans→ TSeq\{ε}, where
Q = {return} and so, as a Proc-algebra:

Proc � Iω(TSeq\{ε}) � TProc(1)

Martín Abadi, Gordon Plotkin A Model of Cooperative Threads

Introduction
A Language for Cooperative Threads

An Elementary Fully Abstract Denotational Semantics
An Algebraic View of the Semantics

Conclusions

Some Algebraic Reflections

This is applied domain theory where one is interested in
particular models and, particularly, their algebraic structure.
Having free algebras is a condition on a domain theory: cf.
Martin Hyland’s ‘reasons for domain theory’ Part 1.
Here, some structure, particularly the semilattice structure, is
‘nice’ mathematically; the actions are less so.
Still, parallel constructs are typically not even algebraic
operations.
In the Proc characterisation theorem, part 2, we do not get the
correct left action structure, though there is a wrong structure
as Pool is a (commutative) monoid.
Perhaps a Hopf shuffle algebra would help for a ‘rational
algebraic analysis’ (cf. Martin Hyland’s categorical rational
reconstructions in domain theory).

Martín Abadi, Gordon Plotkin A Model of Cooperative Threads

Introduction
A Language for Cooperative Threads

An Elementary Fully Abstract Denotational Semantics
An Algebraic View of the Semantics

Conclusions

Possible Future Work

Must semantics (compact sets of transition sequences)
Add variable declaration: a challenge, at the least, for the
algebraic part.
Add higher-types. Can do as have monad, but full abstraction
is another matter.
Change notion of observations: runs with stuttering or
mumbling.
Fairness: all threads in the pool will eventually be chosen in
any infinite run.
Lower level semantics, with block treated as an exception
causing a rollback; can then do C orelse C ′.
What equations hold not involving side-effects, conditionals or
while loops? Example:
[[(async (C; async (D))]] = [[async (C; yield; D)]]

Martín Abadi, Gordon Plotkin A Model of Cooperative Threads

	Introduction
	A Language for Cooperative Threads
	An Elementary Fully Abstract Denotational Semantics
	Denotational Semantics
	Adequacy and Full Abstraction

	An Algebraic View of the Semantics
	The Algebraic Theory of Effects
	Resumptions Considered Algebraically
	Asynchronous Processes Considered Algebraically
	Processes Considered Algebraically

	Conclusions

